DEVELOPMENT OF AN ELECTRET PASSIVE ENVIRONMENTAL RADON MONITOR (E-PERM™) - PHASE 2

FINAL REPORT

PREPARED FOR

NEW YORK STATE

ENERGY RESEARCH AND DEVELOPMENT AUTHORITY

PROJECT MANAGER

JOSEPH E. RIZZUTO

PREPARED BY

P. KOTRAPPA J.C. DEMPSEY

RAD ELEC, INC. 5310 H SPECTRUM DRIVE 270 TECHNOLOGY PARK FREDERICK, MD 21701

NYSERDA REPORT _____

1

AUGUST, 1991

NOTICE

This report was prepared by Rad Elec, Inc. in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter the "Energy Authority"). The opinions expressed in this report do not necessarily reflect those of the Energy Authority or the State of New York and reference to any specific product, service, process or method does not necessarily constitute an implied or expressed recommendation or endorsement of same. Further, the Energy Authority, the State of New York and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose, merchantability of any product, apparatus or service or the usefulness, completeness or accuracy of any processes, methods or other information contained, described, disclosed or referred to in this report. The Energy Authority, the State of New York and the contractor make no representation that the use of any product, apparatus, process, method or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed or referred to in this report.

TABLE OF CONTENTS

	Pag	e		
	List of Tablesiii			
	List of Figuresiv			
	Abstractv			
	Acknowledgements			
1.0	Project Background and Summary.11.1Phase 1.11.2Phase 2.11.3Current status of E-PERM technology.2			
2.0	Description of E-PERM System42.1Description of E-PERM2.2Design features of E-PERM Chambers.2.3Design features of Electret Voltage Reader.2.4Use of the Electret Voltage Reader.2.5Electret Design.2.6Electret Response.2.7Electret Stability.2.8Reference Electrets.			
3.0	Measuring Radon with E-PERMs			
4.0	E-PERM Response Characteristics164.1Precision of E-PERM Characteristics164.2Interchangeability of Long and Short-Term E-PERMs164.3Signal Integrating Characteristics174.4Elevation Effect174.5Temperature Response174.6Humidity Response184.7Effect of Air Flow over E-PERMs204.8Radiation Statistical Error20	*		
5.0	Error Analysis225.1Component Error225.2Readout Error235.3Gamma Background Error235.4Overall maximum Error245.5The Lower Limit of Detection25			
6.0	Cost Comparison With Other Types of Passive Monitors			
7.0	Blind Test Evaluation of E-PERMs 29 7.1 EPA/RMPP Round 6 E-PERM Blind Test E-PERM 29			
8.0	Conclusions			

Page

9.0	Refere	nces	
	Tables	5	37-64
	Figure	S	65-72
10.0	Appen	dix: Results of E-PERM Evaluations by Others)	73
	10.1	Index of Appendix Evaluations and Figures	74
	10.2	Initial EPA E-PERM Evaluation.	75
	10.3	EPA Evaluation of Long-Term E-PERMs vs. Alpha Track	75
	10.4	Recent EPA Evaluations of Long and Short-Term E-PERMs.	76
	10.5	Pennsylvania DOH Double Blind Test	76
	10.6	New York State Department of Health Evaluation	77
	10.7	Tests of E-PERMs vs. Charcoal Canisters by NYSERDA	77
	10.8	Austrian Research Center Short-Term E-PERM Evaluation	78
	10.9	University of Iowa Double Blind Test	78
		Appendix Figures A1 through A8	80-87
	10.10	Appendix References	

.

LIST OF TABLES

<u>Table No.</u>	Page
1	Abbreviations and notations used in the tables
2	Short-Term Electret Stability Test
3	Calibration Data for Short-Term E-PERMs
4	Calibration Data for Long-Term E-PERMs40
5	Performance of Randomly Chosen Short-Term E-PERMs41
6	Intercomparison of Long-Term and Short-Term E-PERMs42
7	Effect of 100% RH on Electret Voltage43
8	Corrections for Background Gamma Radiation by State44
9	Lower Limit of Detection for Long and Short-Term E-PERMS45
10	Round 6 EPA/RMPP Short-Term Blind Test Results46
11	Round 6 EPA/RMPP Short-Term Blind Test Results53
12	Summary of Round 6 E-PERM Results

.

LIST OF FIGURES

Page

Figure No.

1	Photograph of Prototype E-PERM	.65
2	Photograph of Commercial E-PERM	66
3	Sectional Drawing of E-PERM in the Off and On Positions	.67
4	Photograph of the SPER-1 Electret Read-Out Instrument	.68
5	Photograph of Electret Holder Components	.69
6	Photograph of Assembled Electret Holders	.70
7	Calibration Line for Short-Term E-PERMs	.71
8	Calibration Line for Long-Term E-PERMs	.72

ABSTRACT

The development of an electret ion chamber modified for radon measurement is described and characterized. It was given the name E-PERM for electret passive environmental radon monitor. The response characteristics of the two types of electret sensors developed and the E-PERM itself are reported. The results of 518 units blind tested in Round 6 of the EPA RMP Program are presented. Costs per measurement are estimated and compared with other passive monitoring methods. Summary results of E-PERM evaluations presented in eight recent studies by other researchers are presented in an Appendix. The results demonstrate that the new monitor is reliable, accurate and precise.

Key words: Radon, ion chamber, electret, passive.

ACKNOWLEDGEMENTS

The financial support of the New York State Research and Development Authority (NYSERDA) for carrying out this investigation is gratefully acknowledged. The authors wish to acknowledge the help of Mr. A.C. George (DOE, New York) and R. Hopper (EPA Las Vegas) for carrying out several of the E-PERM radon exposures required during the investigation.

Mr. Joseph Rizzuto provided guidance throughout the project as the NYSERDA Project Manager. A volunteer NYSERDA Project Review Committee assembled by Mr. Rizzuto met to evaluate the progress of the project and provide guidance on three occasions. Committee Members were Dr. P. Harrington (NYS Energy Office); Ms. L. Kolhler (EPA); Dr. K. Rinawi (NYS DOH); and Mr. A.C. George (DOE). This guidance was most helpful.

The authors are also grateful to Mrs. Nuala McCarthy for all of the word processing and much editorial assistance and Mr. Robert McCarthy for his help in formulating the charts.

ø

SECTION 1

1.0 PROJECT BACKGROUND AND SUMMARY

The overall goal of this two phase project was to develop, characterize and demonstrate a new type of passive radon monitor which can monitor homes with greater accuracy and lower cost than comparable existing monitors; i.e., charcoal canisters and alpha track devices.

1.1 PHASE 1

Two promising new methods were pursued during Phase 1, one employing a TLD as the sensor and the other an electret ion chamber (EIC). After the initial experiments were completed, it was decided to focus the remainder of Phase 1 work on the EIC approach. That work was successful and a laboratory prototype EIC monitor was developed which was called an E-PERM^{*} for <u>electret passive environmental radon monitor</u>. Several prototypes were fabricated, character-ized, demonstrated and a report ⁽¹⁾ and technical paper ⁽²⁾ were published to complete Phase I.

1.2 PHASE 2

÷

It was recognized at the outset of Phase 2 that the cup-in-cup E-PERM design that was developed during Phase 1 had several limitations that had to be overcome to make a practical, commercially viable E-PERM. Thus, the principal goals of Phase 2 were to develop a commercially viable E-PERM design and to produce, characterize and field test several prototype units. A satisfactory design was developed and several commercial prototype instruments were fabricated and submitted to the EPA Las Vegas Laboratory for evaluation. The EPA Report was very favorable, concluding that "These results demonstrate that this instrument can measure radon very accurately under varying conditions with very close agreement between replicate samples. The E-PERM performs well when exposed to both low and high radon concentrations."

^{*} E-PERM is a trademark assigned to Rad Elec Inc. U.S. Patent No. 4,853,536 was granted for the E-PERM methodology in August 1988 (assigned to Rad Elec Inc.).

As a result of these findings, E-PERMs were accepted by the EPA for entry into the their Radon Monitoring Proficiency (RMP) Program. The RMP program is a voluntary evaluation program which requires participants to submit 5 long-term and 5 short-term E-PERMs to the EPA for a "blind" radon exposure. The concentration values deported to the EPA by each participant must come within $\pm 25\%$ of the known concentration value.

Fifty radon monitoring companies decided to enter E-PERMs in Round 5 of the RMP Program which took place in 1988. Some 500 prototype commercial E-PERMs were fabricated and made available to the fifty participants along with a calibrated read-out instrument. Figure 1 is a photograph of this prototype unit. These units were hand made by coating the inner surfaces of 250 ml. polypropylene jars with a conductive paint. The spring loaded piston mechanism for turning the units on and off (seen at the top of the unit) was inserted through a hole in the top of the chamber and the metal screw top section was glued to the top of the jar. In spite of the relatively poor quality of these prototype E-PERMs, over 90% of them gave concentration values within the acceptable accuracy limit (\pm 25%) in the blind EPA test and thereby passed Round 5.

Later in 1988, Rad Elec developed the injection molded commercial E-PERM model which is described and characterized in this report. Figure 2 is a photograph of this commercial unit. Some 165 additional radon monitoring companies entered these commercial units in Round 6 of the RMP Program in 1989. (Companies which passed Round 5 were not required to submit monitors again in Round 6) The same \pm 25% accuracy limit applied for Round 6, but the method of calculating the results was considerably more stringent than previous rounds (see Section 7.0). The EPA has indicated that 94% of Round 6 E-PERM participants successfully "passed." Some of the results are analyzed and discussed in Section 7.0 of this report. A paper ⁽³⁾ covering all of the results of Phase 2 was published in 1990.

1.3 CURRENT STATUS OF E-PERM TECHNOLOGY

The commercial E-PERM system has been well received by the radon industry. Over 400 companies and agencies are now using them in the U.S. and overseas. Professional radon monitoring companies have been especially receptive of this new technology because, for the first time, it provides a passive type monitor which can be read out in the field, i.e., the portable read-out meter eliminates the need to send the monitors to a central laboratory for analysis as usually required by competitive types of passive monitors. This time saving feature is especially important in measurements made to support real estate transfers.

Several variations in the electret ion chamber technology have been developed and commercialized by Rad Elec Inc. beyond the 200 ml. E-PERM model reported on here. Smaller and larger chambers (75 ml and 500 ml) which accept the same long or short-term electrets have extended the range of this new radon monitoring technology substantially. The incorporation of a calibrated sampling pump and a high efficiency filter element has resulted in the development of an electret RPISU⁽⁴⁾ which measures progeny very accurately. E-PERMs are also now being used to make accurate measurements of radon in water by sealing them in jars together with a known volume of the water being tested⁽⁵⁾. Their insensitivity to moisture enables this later application.

Recent work has also demonstrated that E-PERMs can be used to measure gamma radiation, even at environmental levels, very accurately. This is accomplished by sealing an E-PERM in a radon-proof bag for a known exposure period⁽⁶⁾ None of these extensions of the electret ion chamber technology are covered in this report

2.0 DESCRIPTION OF E-PERM SYSTEM

The general design and operational characteristics of E-PERMs have been described elsewhere; (2, 3) however, they are summarized here again for those who do not have access to these earlier papers.

2.1 DESCRIPTION OF E-PERMS

E-PERMs are ion chambers in which a single electret serves as both the ion collecting high voltage source and the radon sensor. The electret is a permanently charged disk of Teflon (TM Dupont). E-PERMs are passive monitors requiring no power to function, i.e., ambient radon enters into their sensitive volume by diffusion. They are integrating monitors which measure the average radon concentration in the room where they are located during the exposure period.

E-PERMs can be employed for either short-term (2 to 7 days) or long-term (1 to 12 months) measurements by simply attaching a short or long-term electret to the same E-PERM chamber. The charged Teflon disks used for long-term electrets are thinner and thereby less sensitive than short-term electrets (See 2.5 below). The lower sensitivity of long-term E-PERMs makes them suitable for either long-term monitoring of low radon concentrations or short-term monitoring of high concentrations.

The ion chambers of the commercial E-PERMs which are 200 cubic centimeters in volume are made from conductive plastic. The assembled E-PERM has a detachable electret attached on the bottom and filtered holes in the top. The filter permits entry of radon gas into the chamber while preventing ambient dust, progeny and ions from entering. The holes are sized to assure a sufficiently long gaseous diffusion time to minimize the entrance of ²²⁰radon (thoron) which decays rapidly (56 sec. half-life). A picture of an E-PERM is shown in Figure 2 and a cross-sectional drawing in Figure 3. Both figures show the E-PERM in both open and closed positions.

As described earlier, the electret collects the ions generated inside the chamber by the radon and radon decay product radiations. The ions formed by the decaying radon radiations (mostly by very energetic alpha emissions) are drawn to the surface of the electret by the electrostatic field which emanates from the electret surface. When the ions contact the surface of the electret, they cause a reduction in its surface voltage and the amount of this voltage reduction is a measure of the time integrated radon concentration during any exposure period. Thus, the electret serves not only as the source of the electrostatic field needed to collect the ions, but also as the quantitative ion sensor.

The same E-PERM with the same electret can usually be used for many separate measurements, e.g., short-term units can make about 20 measurements at the 4 pCiL⁻¹ level. Equation 1 below, which was developed in Phase 1, shows the relationship between the electret voltage drop and the average radon concentration during an exposure.

$$RnC = \frac{(Vi - Vf)}{(T) (CF)} - B$$
 Equation 1

Where:

<u>RnC</u> is the radon concentration in pCiL⁻¹

 \underline{T} is the exposure period in days

<u>Vi and Vf</u> are the initial and final electret voltages

<u>CF</u> is the calibration factor in volts per pCiL⁻¹

<u>B</u> is the radon concentration equivalent of natural gamma radiation background (BG). B for 1.0 urad h^{-1} was measured to be equivalent to .087 pCiL⁻¹. The BG at measurement sites can be measured with a suitable gamma survey meter or it can be taken from an EPA listing of average State BG values (11) (See Sec.5.3).

2.2 DESIGN FEATURES OF THE E-PERM CHAMBER

Phase 1 work showed the importance of using low atomic number materials for E-PERM components in order to minimize interference from natural background gamma radiation (BG). The chamber material must also be electrically conductive so as to prevent the buildup of electrostatic charge on its inner surfaces. Accordingly, the commercial E-PERM chambers and electret holders are made of carbon filled polypropylene. The Phase 1 investigations also established criteria regarding the volume and shape of the ion chamber needed to optimize the E-PERM response to radon and the commercial unit reflects these criteria.

5

A cover is needed for the electret to prevent it from losing voltage when the chamber is not in use, e.g. during storage or transport. If left uncovered, ions of opposite polarity in the ambient air are attracted to the surface of electrets where they neutralize the charge on the electret. A cup-incup cover mechanism was developed during Phase 1 for this purpose. In this configuration, one cup has the electret fixed inside its bottom surface and the bottom of the second cup serves as the electret cover when it is slid bottom-first down over the electret. After homeowner trials, it was decided that this cup-in-cup arrangement was impractical because it required the user to expose the electret directly to ambient air when preparing the unit for a measurement. A novel spring-loaded piston mechanism was developed during Phase 2 for the commercial model which covers and uncovers the electret without exposing it in this way.

As seen in Figure 3, the electret cover is attached to a screwcap on top of the E-PERM which can be screwed down to lock the electret cover down close to the electret. This effectively cuts off the electric field emanating from the electret. Without the electric field, the E-PERM is "off," because no ions are drawn to the electret surface. When the E-PERM is to be used, the screwcap is unscrewed and a compression spring under it lifts and holds the electret cover up against the top of the chamber. This permits the electrostatic field from the electret to emanate into the chamber, thereby turning the E-PERM "on."

As mentioned earlier, the filtered inlet shown in Figure 3 is necessary to allow radon into the chamber while excluding radon progeny, dust and ions from outside. Though not apparent on the drawing, there are six small holes 0.25 cm in diameter in the top of the E-PERM giving a total hole area of 0.3 cm². Their recessed position reduces the risk of damage to the filter.

As described the Phase 1 report, the entry hole diameter and the ratio of total hole area to chamber volume control the time it takes radon to diffuse into the E-PERM. The hole parameters sited above were chosen to minimize the E-PERM response to short lived (half-life 56 sec.) 220 Rn (thoron). Experiments carried out during Phase 1 showed that E-PERMs with these particular hole parameters have less than 10% response to ²²⁰Rn relative to ²²⁶Rn. The resulting diffusion rate, which is estimated to be in the order of 10 minutes, still assures suitably fast response to rapid concentration changes in the longer lived (3.824 day half-life) ²²⁶Rn.

Phase I work also quantified E-PERM response as a function of chamber volume and electret thickness. It also showed that, in general, their dynamic range is inversely proportional to their sensitivity. Based on this earlier data, design calculations during Phase 2 led to the adoption of the 200 cc E-PERM chamber for the commercial unit. Two electret thicknesses of 0.23cm and 0.0127 cm were chosen for the commercial instrument to serve as short and long-term detectors, respectively. (The thicker electret is roughly 10 times more sensitive than the thin one.) Field experience has confirmed that these design choices accommodate the range of radon concentrations commonly found in homes satisfactorily.

2.3 DESIGN FEATURES OF THE ELECTRET VOLTAGE READER

Figure 4 is a photograph of the SPER-1 instrument developed to read out the surface voltage of electrets (SPER-1 stands for <u>Surface Potential Electret Reader-1</u>). The instrument (1) reads out electret voltages directly in volts on a digital display without making contact with the electret surface; (2) repeats voltage readings from 1 to 1,000 volts to $\pm 1V$; (3) automatically zeroes before every reading; (4) its "on" switch is activated by the movement of the shutter; (5) it

holds the voltage reading display for four minutes and then shuts off automatically; (6) it gives a sound signal if the shutter is not closed or opened completely to preclude false readings; (7) it is smaller and more rugged weighing only about 0.5 kg.; and (8) it is powered by a single 9V battery and has a low battery indicator. A cushioned carrying case is now provided with each reader to help protect it from droppage, dust and dirt, etc.

2.4 USE OF THE ELECTRET VOLTAGE READER

The user must carry out the following steps in making each electret voltage measurement. Both the initial and final voltage readings should be carried out as close to the exposure period as possible to assure maximum accuracy. <u>Care must be taken to prevent the electret surface from</u> <u>accumulating dust or lint and from being touched by anything throughout this procedure.</u>

- Carefully unscrew and remove the electret assembly from the bottom of the E-PERM. (The Teflon disk seen in the inner center of the assembly is the electret.)
- 2. Place the electret face down into the circular electret receptacle on the voltage reader. Move it a bit to assure that it is well seated and free to move in the receptacle. Care must be taken to assure that no dirt or foreign material is present in the electret receptacle which might keep the electret from seating properly. Revolve the electret assembly until the identification number on its bottom is right side up and parallel with the instrument panel meter.
- 3. Opening and closing the metal slide with a lever on the side of the voltage reader causes the electret voltage reading to appear on the LCD panel. The slide should be held open for at least 5 seconds to obtain a proper reading and left in the closed position at least for 5 seconds before taking the next reading. When the same voltage value appears twice in a row during this sequence, it reflects the true electret voltage. This takes at least 3 openings because the first value is often spurious.

4. Replace the electret in a storage (covered) mode either in an E-PERM with the popup like screwed down or with its shipping cover screwed closed. Make sure there is no dust or lint in the cover or E-PERM shell which can get on the electret surface when it is closed.

2.5 ELECTRET DESIGN

The design production and response characteristics of electrets were also discussed in our earlier work (1, 2, 3).

The commercial electret holder is also injection molded from electrically conductive polypropylene. Figure 5 is a photograph of the various components of the electret holder and Figure 6 shows assembled short-term and long-term electret holders. As seen, the electret holder is designed with male threads which mate with threads on the bottom of the E-PERM chamber. The electret itself (i.e., the Teflon disk) is held firmly in place in the electret holder by an aluminum screen disk which pressed into place with the plug. The assembled electrets are rugged and drop tests show that they are unaffected by most accidental mechanical shocks; e.g., their voltage remains constant.

Uncovered electrets collect ions from the ambient air which causes them to lose voltage. The electret manufacturer provides a protective cap with all electrets which screws onto the top of the electret holder in order to keep the electret covered during shipping, storage, etc. Thus, electrets can be kept covered either with the on/off cover when mounted in E-PERMs or with their protective caps.

The electret holder (with the protective cap off) is sized to fit snugly into the cylindrical measuring receptacle in the electret reader. A protective lip around the periphery of the electret surface (part of the electret holder) rests on a metal rim around the bottom of this receptacle while the voltage is being read to assure a precise reproducible distance always exists between the surface of each electret measured and the voltage sensor in the reader.

2.6 ELECTRET RESPONSE

The electrets used in the commercial E-PERMs are made and processed in the same manner described in our Phase 1 report (1). Polytetrafluoroetheylene (PTFE) disks, 0.152 cm thick by 3.8 cm diameter are used for short term electrets and tetrafluoroethylene (FEP) Teflon disks 0.0127 x 3.8 cm are used for long term electrets. As mentioned earlier, these two particular electret thicknesses were chosen to provide E-PERMs optionally responsive to the most common home radon concentrations during the exposure periods recommended in EPA measurement protocols. The same 200 ml. chamber is used for both short-term and long-term E-PERMs; the only difference being the sensitivity (thickness) of the electret attached to it during the measurement. In general, short-term E-PERMs are intended for 2 to 7 day exposures and long-term E-PERMs for 1-12 month exposures. However, there is no inherent reason why a long-term electret cannot be used for short exposures, as long as the electret voltage drop realized during an exposure is adequate to assure the reader error $(\pm 1V)$ does not contribute an unacceptably to the overall error in the radon concentration measurement (see 5.2) Short-term E-PERMs can also be used for exposures longer than 7 days in low radon levels, as long as the electret voltage does not fall below about 200 volts. Tests described in this report (see Section 3.2 below) verify this interchangeability of electrets within their range limits. In fact, long-term electrets are often used for short-term measurement in homes that are known to contain a high radon concentration.

The surface voltage of all new electrets is controlled to about 750 volts. The calibration curve becomes a bit non-linear for E-PERMs with electrets above this voltage probably because of ion multiplication. The curve also becomes less linear below about 200 volts, so electrets should not be used much above 750 volts or below 200 volts. The 550 volt range (between 200V to 750V) corresponds to a dynamic radon monitoring range of 240 and 2800 pCiL⁻¹ - days for short and long-term E-PERMs respectively.

2.7 ELECTRET STABILITY

The electrical stability of the electrets is very important to assure accurate E-PERM measurements. The first report ⁽¹⁾ on the E-PERM includes a discussion of some of the treatments used to stabilize the voltage of electrets. They also included a list of electret voltages taken repeatedly on the same electrets over several months to demonstrate their electrical stability.

A similar stability test was carried out again in the present investigation because the design of the current commercial electrets and readout instrument are quite different than the prototype units used in the earlier stability evaluations. Table 2 shows the results of a four month test of the electrical stability of 30 typical commercial short-term electrets carried out by the EPA in their Las Vegas Laboratory.⁽⁶⁾ The electrets were stored with their covers on in the laboratory throughout the test period. Considering the fact that the voltage reader is only accurate to within ± 1 volt for both the initial and final readings, it can be seen that none of the electrets listed underwent a measurable voltage loss over the 4 month test period.

2.8 REFERENCE ELECTRETS

Reference electrets are essentially long-term electrets which have undergone special processing and quality assurance to verify their voltage stability. The routine use of these referenced electrets, which are available from Rad Elec Inc., is recommended to assure that any drift or malfunction of the readout meter is detected. Their initial voltage is carefully measured and certified with reference to a simulated (metal disk) electret connected to a special electronic high voltage supply which, in turn, is measured with a voltmeter with certified NIST traceable calibration.

Rad Elec recommends that E-PERM system users measure and record the voltages of two such reference electrets at least once a week as a routine part of their SPER-1 QA procedure. If the voltage of both of these electrets vary by more than three volts from the prior week measurement values, a meter drift or malfunction is indicated and corrective action is recommended. The second

reference electret is necessary in case the first one is accidently touched, i.e., if only one reference electret were available, and it gave a low reading, the user might not know whether the meter or the electret were at fault.

3.0 MEASURING RADON WITH E-PERMs

3.1 CALIBRATION OF E-PERMS

The Phase 1 report indicated that a constant calibration factor was applicable over the total operating range of electret voltage from 200 to 750 volts. However, careful measurements carried out during Phase 2 show that calibration factors for the commercial E-PERMs vary by about 15% over this voltage range for both short and long-term monitors. Accordingly, a range of calibration factors (CF) has been determined based on the midpoint electret voltage of each particular measurement. The midpoint voltage is the average of the initial and final electret voltage for a particular radon measurement. The procedure used to derive this calibration data is discussed below. (The calibration factors currently recommended for use by E-PERM user are derived by averaging a series of such results obtained in several calibrated chambers and they are updated routinely.*)

Generally, twenty-five E-PERMs of the same type are exposed to the same known average concentration in a calibrated radon chamber. The procedure used in the first calibration test carried out in Phase 2 was as follows: Five short-term E-PERMs having nearly the same initial electret voltages were grouped into a subset. Five such subsets, each having slightly lower (about 100 V lower) initial voltages formed the total set of 25 E-PERMs used in the experiment. The total set was exposed in the chamber simultaneously. The radon chamber remained at a fairly constant concentration throughout the test period and that concentration was measured and recorded hourly with a continuous monitor. This procedure was repeated several times for both short-term and long-term E-PERMs to obtain statistically sound data. Table 5, 3 and 4 give the data obtained from these calibration experiments for short-term and long-term E-PERMs, respectively. This data was then used to calculate the calibration factors for both E-PERM types using Equation 1 above. The

^{*} Current calibration factors and back-up data are available from Rad Elec Inc., 5310H Spectrum Drive, Frederick, MD 21701.

average of the standard deviations of the calibration factors for each 5 E-PERM subset is less than 3% for both sets of data. Equations 2 and 3 below, derived by linear regression, are the CF equations defined by these data for short and long-term E-PERMs, respectively.

CF (ST) =
$$1.5692 + 001251 \text{ x} \frac{(V_i + V_f)}{2}$$
 Equation 2

CF (LT) =
$$0.178 + 000062 \text{ x} \frac{(\text{Vi} + \text{Vf})}{2}$$
 Equation 3

Where:

CF (ST) and CF (LT) are the calibration factors for short-term and long-term E-PERMs in $pCiL^{-1}$ -d.

Figures 7 and 8 give the graphical representation of these results.

3.2 MEASURING RADON CONCENTRATION WITH E-PERMS

Following are the steps required to measure radon with E-PERMs:

- Measure the initial electret voltage (Vi) using the electret voltage reader. (See Section 2.4)
- (2) Screw the electret into the bottom of the E-PERM chamber.
- (3) Turn the E-PERM unit to its "on" position (i.e., unscrew the top lid) and record the date and time it was turned on.
- (4) Deploy the E-PERM at the location to be monitored in accordance with EPA protocol.
- (5) After a known exposure time (2 to 7 days for short-term or 1 to 12 months for longterm E-PERMs), turn the E-PERM to its "off" position. Record the date and time it was shut off.

- (6) Remove the electret and measure its final voltage (Vf).
- (7) Determine the correction (B) to be applied for gamma background at the site. (See Section 5.3)
- (8) Calculate the radon concentration using Equations 1 and 2 or 1 and 3 above.

With suitable written instructions, E-PERMs can be deployed by home owners as well as radon measurement professionals. Experience has shown that they can be mailed for deployment and return by homeowners with good results. However, they should be analyzed (read-out) only by technicians who have been trained to handle the electrets and use the SPER-1 instrument properly.

4.0 E-PERM RESPONSE CHARACTERISTICS

4.1 PRECISION OF E-PERM RESULTS

Table 5 gives the result of a study conducted to determine the repeatability and precision of measurements made with randomly chosen E-PERMs. Subsets of two short-term electrets each were randomly chosen from fifteen (15) different production batches for testing (electrets are produced in batches of about 250 units). All were loaded into randomly chosen E-PERM chambers and exposed simultaneously in a radon chamber for the same period. The radon concentration value was again calculated for each E-PERM using equation 1. The percentage coefficient of variation was then calculated for each 2-E-PERM subset using the standard procedure applicable to a sample size of 2. A further correction of 1.253 was applied to each result as recommended by Dixon and Massey ⁽⁷⁾ to compensate for small sample bias (N=2) to arrive at the unbiased estimations of the population standard deviations listed in Table 3. As seen, the mean standard deviation for all 15 subsets tested was 4.8%.

4.2 INTERCHANGEABILITY OF LONG AND SHORT-TERM E-PERMS

Long and short-term E-PERMs should give the same concentration values when exposed together to a time-integrated radon level within the overlapping region of their dynamic ranges. To verify this limited interchangeability of long and short-term units, several E-PERMs of both types were placed simultaneously into a radon chamber and exposed for the same period of time. The concentration in the chamber was known, so a time-integrated radon exposure value was chosen which was close to the upper range limit of the short-term E-PERMs and to the lower range of the long-term E-PERMs. As seen in Table 6, the concentration values obtained with the two types of instruments were essentially the same. This data demonstrates that long-term E-PERMs do, indeed, give accurate results when used for short exposures in higher radon concentrations, and visa-versa.

4.3 SIGNAL INTEGRATING CHARACTERISTICS

The excellent signal integration and retention characteristics of E-PERMs were demonstrated and reported in the Phase 1 report for the cup-in-cup type instruments. A test of the integration capability of the commercial model E-PERMs was conducted during Phase 2 at the Department of Energy's Environmental Measurement Laboratory (EML). E-PERMs were exposed for 16 h in the EML radon chamber to a known 40 pCiL⁻¹ then left out of the chamber for 8 h in a known concentration of 0.5 pCiL⁻¹. This cycle was repeated 4 times giving a total of 106.7 pCiL⁻¹ - days of chamber exposure and 0.7 pCiL⁻¹ - days of office exposure. The total time integrated radon concentration as measured by the E-PERMs was within 5% of the combined integrated exposure of 107.4 pCiL⁻¹ - days.

4.4 ELEVATION EFFECT

Kotrappa and Stieff ⁽⁹⁾ recently showed that elevation has a slight effect on the response of the 200 ml E-PERM above 4,000 feet elevations. Radon concentrations measured at 4,000 and 5,000 feet elevations must be increased by 3% and 9%, respectively. No correction is necessary elevations less than 3000 feet. Corrections for other elevations can be interpolated on a linear basis. This correction is quite small and it can be applied by E-PERM users in mountainous areas of the country using only a rough estimate of the elevation at measurement sites.

4.5 TEMPERATURE RESPONSE

Calculations based on the elevation effect experiment referred to in 4.4 above indicate that the air density changes up to 11% have no effect on E-PERM response. This air density change corresponds to a temperature change of approximately 36°F or 20°C (303° K / 273° K = 1.104 or 10.4%). Accordingly, it was reasoned that temperature changes in the range of 20° C (36° F) should also have a negligible effect on the E-PERM response. This was verified in an experiment

wherein four E-PERMs were located in a warm air stream for 3.8 days at an average temperature of 43°C. Three other electrets were located upstream from the heat source where the average temperature for the same exposure period was 24°C. The experiment was carried out in a large basement and a small fan was run constantly to facilitate equal radon concentrations in the vicinity of all of the monitors. The average concentration, as determined by the 3 units in the warm air stream was 8.9 ± 0.4 pCiL⁻¹ and that determined by the cool units was 9.7 ± 0.5 pCiL⁻¹. The difference between the two average values (0.8 pCiL⁻¹) is considered to be statistically insignificant because it is within the error bars of the two measurements. Thus, the experiment verified that E-PERMs are, indeed, temperature insensitive over a temperature range of at least 20°C (36°F). Calculations based on the elevation effect data in 4.4 above indicated that the slight effect expected at extremes of environmental temperature will be indistinguishable within the overall E-PERM error. Another temperature effect has been observed, however. Experiments carried out in Phase 2 show that electret voltages tend to rise and fall slightly as their temperature goes up or down (about 1V per 10°F) but only if their voltage is measured while they are still hot or cold, When their temperature returns to room temperature, their voltages return to exactly the same starting voltage. The voltage response of the voltage readers was also found to increase about 0.5V per 10°F increase. As a result of these experiments, E-PERM users have been instructed to be sure that the temperature of the electret and SPER-1 are approximately the same(i.e., within $\pm 5^{\circ}$ F) during the initial and final voltage reading.

4.6 HUMIDITY RESPONSE

It was also shown in our earlier experimental work ⁽¹⁾ using a laboratory model E-PERM that changes in relative humidity from 12% to 98% have no appreciable effect on E-PERM response. The U.S. Environmental Protection Agency ^(A1) also evaluated the humidity response of several prototype E-PERMs and concluded that they showed no measurable response up to 65% RH (the maximum RH tested).

During Phase 2 the DOE chamber at their EML Facility in New York was modified to enable humidity control. A. C. George, the manager of that facility, exposed and read out a number of short-term and long-term electrets in the chamber at various relative humidities and reported the following results ⁽⁸⁾ to the authors.

Six short-term E-PERMs were exposed to an average concentration of 49.1 pCiL⁻¹ (as measured by EML) for 104 hours at a constant RH of 87%. The average E-PERM concentration was 45.8 ± 2.2 pCiL⁻¹.

Eight long-term E-PERMs were exposed to an average concentration of 39.2 pCiL⁻¹ for 456.75 hours with RH varying as follows: 4 days at 87%, 1 day at 95%, and 14 days at 50% (the RH was varied to accommodate other experiments being carried out simultaneously). The average E-PERM concentration of the eight units as reported by George was 36.7 ± 0.5 pCiL⁻¹. George concluded from these two experiments that "The intercomparison results indicate that both the short and long-term detectors (E-PERMs) agree very well with the true value (difference of 6.7%)."

Table 7 shows voltage measurements of 12 long-term and 12 short-term electrets after one and two weeks of continuous exposure to 100% RH. The electrets represented were chosen randomly from routine production lots and sealed in air-tight containers with wet sponges. They were all stored at room temperature (about 75°F) with their covers on during the two week period. The electret covers all have small filtered holes in them so the moisture quickly equilibrates at the electret surface. As seen in Table 7, only a few of the test electrets (e.g., ST No. 5) showed appreciable voltage change. (One volt changes are not significant because the readout meter is only accurate to ± 1 volt.) Careful inspection of the surface of those electrets which show measurable voltage loss on such tests indicate that the loss may be due to dirt (particles and fibers) on the surface. It was concluded from these tests that Rad Elec Inc. electrets show no appreciable effect in radon response even at 100% RH. Of course, it is very unlikely that electrets will ever be exposed to 100% RH continuously over such an extended period in home testing. However, RH can reach 100% for short periods in home basements especially at certain times of the year.

It should be pointed out that the simple 100% RH test exposure procedure described above has proven to be an excellent QA tool for assuring electret stability. The procedure is now applied routinely by Rad Elec Inc. to a representative number of electrets from every production batch. Electrets which change more than 5 volts per week over a two week period are deemed unacceptable.

4.7 EFFECT OF AIR FLOW OVER E-PERMS

It is well known that even slow movement of air over most types of charcoal canisters effects their radon response substantially. Mindful of this phenomena, a brief experiment was carried out to evaluate the effect of air flow over E-PERMs.

The louver covering the return air duct in a home was removed and four short-term E-PERMs were placed directly in the duct. The furnace fan control was set to run continuously for the four days exposure. A rough measurement of the air velocity in the duct indicated a flow of 70 to 100 feet per minute. Four other short-term E-PERMs were placed on a table about four feet below the air duct entrance. After four days, all eight E-PERMs were analyzed. The average radon concentration recorded by the four units in the moving air stream was 3.8 ± 0.2 pCiL⁻¹ and that by the still air units was 3.7 ± 0.2 pCiL⁻¹. Accordingly, it was concluded that air flows up to about 100 feet per minute do not effect E-PERM response to radon.

4.8 RADIATION STATISTICAL ERROR

The radiation statistical (Poison) error in E-PERM results is practically negligible because of the very large number of alpha disintegrations that are integrated by the detector during the exposure period. On first consideration, it would appear that the Poison statistical error analysis method may not apply to E-PERM measurements because electrets do not detect alpha particles as discrete events. However, the electret does collect ions in discreet pulses as the alpha emissions occur in the E-PERM chamber. In order to get a perspective on the magnitude of this Poison error,

it is useful to calculate the number of alpha disintegrations which occur in the E-PERM to assess the equivalent Poison error associated with a hypothetical radon measurement.

Let us consider a three day measurement in a chamber held at 1 pCiL⁻¹. By definition, 1 pCiL⁻¹ is 2.2 disintegrations per minute (dpm) per liter of air or 3168 disintegrations per day (dpd). Thus, 1 pCiL⁻¹ of radon in the 200 ml E-PERM chamber yields $3168 \ge 0.2 = 634$ dpd. However, two of the four radon progeny which quickly form and decay in the chamber are also alpha emitters. The two short lived beta emitting progeny (there are four progeny in all) probably do not contribute much to the signal because of the relatively low interaction of betas with air. Both of these alpha emitting progeny are usually (about 95% of the time) positively charged when formed. The electrostatic field from the electret is positive, so the charge progeny affix themselves to the inner chamber wall soon after they are formed. When they decay, their alphas are only emitted into the chamber volume 50% of the time (the alphas go into the chamber wall the rest of the time). In net effect then, each radon gas disintegration gives rise to one other alpha particle.

Accordingly, instead of 634 dpd, 1 pCiL⁻¹ of radon really gives rise to 634 x 2 = 1268 dpd. Thus, in a 3 day radon measurement of 1 pCiL⁻¹, for example, the electret must collect ions from 1268 x 3 = 3804 alpha events. Therefore, the Poison error for such a measurement is

 $\pm \sqrt{3804}$ / 3804 x 100 = 1.4%

Obviously, this radiation statistical error will usually be even or less for measurements of more than 1 pCiL⁻¹ or of longer durations.

5.0 ERROR ANALYSIS

The previous section discussed the effect of many variable environmental parameters on the radon response of E-PERMs. It showed, in general, that they do not affect the response appreciable or that the small error which they might introduce can be corrected for readily. Parameters which can introduce appreciable error are discussed and quantified in this Section.

The overall error of the E-PERM system is made up of three components:

1. The E-PERM component error (E1) associated with the chamber volume, electret thicknesses and other chamber parameters. 2. The readout error (E2) associated with the reading of the electrets. 3. The background error (E3) associated with the uncertainty of the natural gamma radiation background.

5.1 COMPONENT ERROR

This error factor includes E-PERM response variations due to the small dimensional variations expected from unit to unit; e.g., in chamber volume and electret (Teflon) thickness. The experiments described in 3.1 above using Table 3 data gave a standard error (E1) of 4.8%. The E-PERM and electrets used in these experiments were chosen at random, so the variations seen in the results are representative of all commercial unit. Thus, E1 can be taken as \pm 5% and the error in radon concentration then due to E1 can be expressed as:

$E1 = \pm 0.05$ (RnC)

Where: RnC = measured radon concentration

5.2 READOUT ERROR

The electret voltage reader displays voltages to an accuracy of ± 1 volt over its entire voltage range. This is the readout error (E2). Since two readings are required to determine the radon concentration, the fractional readout error associated with making a radon measurement is:

$$\pm \frac{\sqrt{1^2 + 1^2}}{(V_i - V_f)}$$

The percent error in radon concentration (E2) which can result from this fractional error in the voltage reading is:

$$E2 = \pm \frac{\sqrt{2} \times 100}{(V_{i} - V_{f})} = \frac{140}{V_{i} - V_{f}}$$

5.3 GAMMA BACKGROUND ERROR

The gamma background radiation (BG) at the measurement site is a positive interference in E-PERM radon measurements. (See Equation 1) If the exact BG value is known at any measurement site (e.g., in uR/hr) it can be converted to equivalent pCiL⁻¹ and subtracted from apparent radon concentrations measured at that site.

Careful measurements have shown that 1 ur/hr of gamma radiation generates the same number of ions in an E-PERM as 0.087 pCiL⁻¹ - day of radon. This latter number can be used as a factor to convert any measured BG level to its equivalent radon concentration (B) to apply in Equation 1. Thus, if the BG at a radon measurement site is accurately measured or otherwise known accurately, it can be converted and subtracted from the apparent radon concentration. For all practical purposes, this approach eliminates it (BG) entirely as an error source. The BG can be measured with a suitable survey meter or by exposing E-PERM sealed in a radon-proof bag(10) at the site for a known time. Rather than requiring E-PERM users to measure the BG at every site, it is more practical instead to use the statewide average BG levels published by the EPA ⁽¹¹⁾ as a basis for calculating the value of B. Of course, the BG varies substantially across any state, but variations as high as $\pm 20\%$ will introduce no more than 0.2 pCiL⁻¹ error in any radon measurement. Table 8 lists the average BG level in every state and the equivalent radon concentration levels for each which must be subtracted from apparent radon concentration values. As seen, BG values are listed for both higher and lower elevations in some states which further minimizes the potential error. (Rad Elec provides this state BG list to all E-PERM users.)

Since the highest and lowest B (background equivalent) values in Table 5 are 1.2 and 0.6 $pCiL^{-1}$ respectively (e.g., for Colorado and Florida), it can be seen the maximum error due to BG (E3) would only be 0.3 $pCiL^{-1}$ even if an average B value of 0.9 $pCiL^{-1}$ (i.e., average between 1.2 and 0.6 $pCiL^{-1}$) were subtracted from every apparent radon concentration without regard to the true BG value at any site. Thus, by correcting results with state average B values as described above, the error in any radon measurement made in that state should be no more than 0.1 pCi/L. It is on this basis that it can be said that, even at concentrations as low as 1 $pCiL^{-1}$, the BG error in E-PERM results will be no more than $\pm 20\%$.

Based on this assumption, the percent concentration error (E3) which can result of BG uncertainty is:

 $E3 = (0.20 \times BG \times D)$

where D is the factor to convert BG values to equivalent radon concentration $(0.087 \text{ pCiL}^{-1} \text{ per } \mu \text{R hr}^{-1})$.

5.4 OVERALL MAXIMUM ERROR

Combining all three errors defined above by the method of quadrature, the overall maximum error (EO) is given by the following equation

EO =
$$\sqrt{E1^2 + E2^2 + E3^2}$$

= $\sqrt{5^2 + (\frac{140}{V_i - V_f})^2 + (10 \times BG \times D)^2}$ Equation 4

The EO calculated with Equation 4 is the overall statistical error. Hand held scientific calculators can be programmed with Equation 4 so that the maximum error in any E-PERM radon concentration measurement value can be specified. This is not possible with either of the competitive passive monitoring methods (charcoal canisters or alpha track) because of the many more variables involved.

5.5 THE LOWER LIMIT OF DETECTION

For the purposes of this section, the definition used by Thomas ⁽¹²⁾ is used for the lower limit of detection (LLD) viz, that radon concentration that can be measured to an accuracy of 50%. For E-PERMs, this LLD depends upon the period of exposure, the electret voltage region and the type of E-PERM (i.e., short or long-term E-PERM) used in a particular measurement. The LLD can be calculated for various exposure periods by substituting various voltage differentials into the equation for total error (Equation 4) above. For example, a two day measurement with a short-term E-PERM with a voltage change from 707V to 700V gives a concentration of 0.5 pCiL⁻¹ within an overall error (EO) of 51%. Thus 0.5 pCiL⁻¹ is the LLD for this measurement. (Calculating the exact LLD, i.e. at an EO of exactly 50% would result in fractional voltages which are not measurable with the SPER-1.) As Equation 4 indicates, the LLD also varies somewhat with electret voltage. Table 9 shows the range of LLD's expected for various exposure periods.

It should be noted that LLD values usually given for charcoal and alpha track based devices are based on a radiation statistical calculation method which is not applicable to E-PERMs. E-PERM LLD values determined by the above methodology cannot be compared directly with LLD values for the charcoal and alpha track devices.

6.0 COST COMPARISON WITH OTHER TYPES OF PASSIVE MONITORS

6.1 E-PERM MEASUREMENT COSTS

As mentioned earlier, one of the goals of this development effort was to develop a passive monitor which would reduce the cost of radon measurement for homeowners. Accordingly, a rough comparison of the cost of E-PERM measurements with measurements made with the two other types of passive radon monitors, (i.e., charcoal canisters and alpha track devices) is presented in this section. It must be pointed out, however, that unit costs and other cost factors involved in the use of passive monitors vary widely, so the comparisons made here are only approximate.

The present cost of an electret voltage reader when bought in single units varies from \$900 to \$1800* depending on the number of units purchased. Because of the insignificant time needed to make a measurement, a single SPER-1 reader can service a very large number of E-PERMS (e.g., hundreds per day). Reusable E-PERM chambers presently cost about \$50* per unit and the consumable electrets about \$25*.

A single short-term electret can be used to make at least 15 measurements when used for making three day measurements of concentrations in the range of 4 pCiL⁻¹. The maximum number of measurements available with an electret will, of course, depend on the radon concentrations it is exposed to and the cumulative duration of the exposures, i.e., an electret gives fewer measurements at higher concentrations. However, most homes have radon levels less than 4 pCiL⁻¹ so electrets do, on average, last for at least 15 measurements. Assuming that the meter and chamber amortization costs are \$1 per measurement, the cost per E-PERM measurement is roughly about \$2.70, i.e., \$1.70 electret use cost and \$1.00 for equipment amortization. Readers and

^{*} Substantial quantity discounts are available on all E-PERM system components. The only manufacturer at the present time is Rad Elec Inc.

chambers can be used for many years without service or replacement so their amortization costs for short-term measurements is very low.

Likewise, a long-term electret, which also costs about \$25, can give about 6 three month measurement in concentrations in the 4 pCi/L⁻¹ range. On this basis, the electret cost in making a long-term E-PERM measurement is about \$4.20. However, since the \$50 E-PERM chamber is used for a considerably longer period here, some chamber amortization cost should probably be added to the measurement cost. Assuming a \$5 amortization cost per reading for the E-PERM chamber, the total long-term measurement cost would be \$9.20.

A smaller E-PERM chamber is now available for long term measurements which cost only about \$20 including the electret. The comparable amortization cost per reading for this device which can be used for about 8 one year measurements with the same long-term electret, would be about \$2.00, so its unit measurement cost is about \$5.10.

6.2 COMPARATIVE COSTS

Unit measurement costs using charcoal canisters or alpha-track devices vary widely However, the \$2.70 per measurement E-PERM cost estimated for short-term measurement indicated above can be compared roughly to the current \$4-15 price for charcoal canister measurements. The \$9.20 and \$5.10 long-term E-PERM measurement cost estimates can be compared with the current market cost of \$10-20 per alpha track measurement. Even though these comparisons are very rough, it is apparent that the E-PERM system does, indeed, afford an economical alternative radon measurement method. Recent field experience verifies this conclusion.

Through not quantified here, it is obvious that the substantially lower cost of the E-PERM read-out instrument (about \$1800) relative to charcoal or alpha-track read-out instruments, reduces the relative cost of E-PERM measurements over time. The fact that a single read-out instrument

suffices for both long and short-term measurements also translates to a considerable economic advantage for E-PERM users who make both types of measurements.
7.0 BLIND-TEST EVALUATION OF E-PERMS

The final task in Phase 2 was to demonstrate the electret ion chamber technology in the field and determine its advantages and disadvantages, especially with respect to accuracy and precision, relative to other available passive devices. Initially, it was planned to carry out this task using the prototype E-PERMs developed in Phase 2. However, the new technology became commercially viable so quickly that the field demonstrations were carried out with the molded commercial E-PERM units.

The completion of the project coincided with the initiation of Round 6 of the USEPA Radon Measurement Proficiency Program (RMPP) so it was decided to utilize the results of the blind radon chamber tests required of participants in that program as the principle E-PERM evaluation mechanism for the project. To this end, the authors asked all E-PERM participants to provide their results to them for analysis. Only 45% of the E-PERM participants did so, but they provided results for 518 units, which is sufficient for a meaningful evaluation.

7.1 EPA/RMPP ROUND 6 E-PERM BLIND TEST RESULTS

As part of their Radon Monitoring Proficiency Program (RMPP), the USEPA requires all companies who wish to be listed by them as proficient Primary Radon Measurement Laboratories to participate in a blind test of their ability to measure radon accurately. The proficiency listing earned by a participating company applies only to those types of monitoring instruments which that company enters into a particular round of tests. In past test rounds (Rounds 1 through 6), companies which entered with passive type monitors were required to send five duplicate units to EPA's designated Radon Coordinator for the blind test. The five devices were exposed to known radon concentrations (i.e., known to EPA, but not to participants) for known time periods. The monitors were then returned to the participant together with a notification of the exact length of time

they were exposed. The participant was required to analyze them and notify the Coordinator of the average radon concentration to which each was exposed. If the results fell within a designated range (see below) of the EPA target value, the participant "passed" the blind test and was listed by the EPA as a proficient Primary Radon Measurement Laboratory.

Long and short-term E-PERMs are regarded by the EPA as different types of instruments, so participants who wished to be listed as proficient users of both types were required to submit both 5 long-term and 5 short-term units. About 160 companies entered a total of 1465 E-PERMs in Round 6. In order to pass Round 6, participants had to attain a Mean Absolute Value of the Relative Errors (MARE) of 0.250 or less based on their five measured concentration values. In practice, only four of the results obtained with the five E-PERMs submitted by each participant were averaged because the fifth unit was used as an unexposed control in every instance (though participants were not told which unit was used as the control). The Absolute Value of Relative Error (ARE) for each measurement was defined by EPA as:

ARE = (Mi - Ti) / Ti

where: Mi = the participant measured concentration value Ti = the target (EPA measured) concentration value

The MARE value was the mean or average of the four ARE values. Following is an example of the format used by the EPA to notify a short-term E-PERM participants of their MARE results in Round 6:

Method: ES

Company Method Code: ZJMHS Device Brand: RAD ELEC INC Type/Model: E PERM ST

ANNOUNCED (Single Blind) TEST RESULTS

Company	RTI	Measured	Target	Absolute Value	
Method	Detector	Value	Value	of Relative Error	
Code	Number	Mi	Ti	(Mi-Ti)/Ti	
ZJMHS ES	603005 603006 603007 603008 603009	$05.200 \\ 05.700 \\ 11.700 \\ 00.000 \\ 11.400$	05.518 05.518 12.735 Control 12.735	0.058 0.033 0.081 Control 0.105 Mean 0.069	

The calculated mean of the absolute relative errors (MARE) successfully meets the 0.250 limit of performance.

As indicated at the bottom of the notification letter, this participant "passed" the blind test with a MARE value of 0.069 which is well within the EPA established limit of 0.250.

Though the EPA has not published the complete Round 6 data to date, an Agency official has reported the percentages of the various types of passive monitor which "passed" Round 6 were as follows:

Electret Ion Chambers (E-PERM) 94% passed (278 out of 293 participants*) 69% passed (104 out of 136 participants*)

Activated Charcoal

Alpha Track Detectors

67% passed (16 out of 21 participants*)

* The number of participants in each category were calculated from other data released by the USEPA.

It is apparent from these comparative results that the accuracy of both long and short-term E-PERMs were superior to the other two types of passive monitors which were entered into the Round 6 RMP test program.

Tables 10 and 11 are compilations of Round 6 results for short-term and long-term E-PERMs, respectively. They were provided in response to direct requests from the authors by 78 short-term and 54 long-term Round 6 E-PERM participants. Including the control units, which are not listed, the two Tables represent results for 390 short-term and 270 long-term E-PERMs for a total of 660 units. It is understood that a total of 293 sets of five or 1465 E-PERMs were entered in Round 6. Thus the results listed in the Tables represent 45% of the total number of E-PERMs entered in Round 6 which is a representative sample of total entries. The other 55% of the E-PERM participants did not respond to the authors' request for voluntary submission of their results.

The EPA reported all target concentration values to three decimals. These are also listed in the Tables. They also gave the exact dates and times during which they were exposed (not in the Tables) so it was a simple matter to identify E-PERM groups which were exposed together, i.e., E-PERMs which were in the chamber at the same time and for the same exposure period. Those which were found to have been exposed together in this way are grouped together in Tables 10 and 11. The several horizontal lines which appear throughout the Tables serve to delineate the E-PERMs which were exposed together. In looking over common E-PERM exposure groupings , several useful characteristics of the results are immediately apparent. It was also obvious, for example, that about half of the E-PERMs had been exposed to very low concentrations of about 2 to 5 pCiL⁻¹ and half to about 12-17 pCiL⁻¹. Column headings in both Tables make this distinction.

Asterisks have been placed after the overall MARE values in the last column listed of both Tables to designate participants that exceeded the EPA's 0.25 MARE criteria. As seen, only five of the short-term and two of the long-term E-PERM participants represented in the list failed the

blind test. It can also be seen that three of the five participants whose short-term E-PERMs failed are all in one particular exposure grouping viz., those exposed to 15.073 pCiL^{-1} . Set numbers 13.4.8, 13.5.8, and 13.6.8 in Table 10 show the data for these units which failed. Each of these three failures was caused by an accuracy error of at least +50% or more. The results of all of the other E-PERMs exposed in this 15.073 pCiL^{-1} concentration group (i.e., even those which passed the test) also exhibit very high and all of them are positive errors. The average error for the 16 units exposed together in this grouping was +39.8%, whereas the combined average error for all of the other short-term E-PERMs tested was only 8.5%. This anomalously high error in this one particular group (15.073 pCiL⁻¹) suggests that the EPA's target concentration for this group was erroneous. Accordingly, the 16 E-PERM results in this particular grouping have not been included in the overall average MARE values shown in Table 12 which is a summary analysis of the Round 6 results that are listed in Tables 10 and 11.

As seen, in Table 12, the mean MARE values for all of the short-term and long-term E-PERM results received are 0.118 and 0.104, respectively, and the overall average MARE is 0.112.

Though these average results are well within the EPA's 0.250 Round 6 "passing" limit, the error in some of the individual results listed is considerably higher than has ever been observed in the many other calibrated chamber tests carried out by the authors.

A simple mechanical failure was found to be the cause of some of the false-positive outlyers. This was caused by a few participants not turning their E-PERMs completely off before sending them to the EPA for the blind exposure. Ions can reach the electret when this mechanism is not completely off (i.e., when the electret cover is not screwed all the way down on top of the electret). This causes a false positive result. The EPA retained all E-PERMs submitted for at least a month before exposing them. Even a small flow of ions to the electret could reduce the electret voltage several volts over that long a period. Table 8 also shows that the short -term E-PERMs exposed in the 12 to 17 pCiL⁻¹ range gave more accurate results (average MARE of 0.067) than

those exposed in the 2 to 5 pCiL⁻¹ range (average MARE of 0.169). The same is true of the long-term E-PERM results, though the spread between the low and high concentration units was not as wide (0.085 vs 0.132, respectively).

It is apparent that most of the errors in the individual E-PERM results were negative; i.e., the reported concentration values were lower than the EPA target values. This suggests that the most likely cause of the discrepancy was a slightly erroneous calibration factor. The calibration factor has since been modified to correct for this discrepancy.

8.0 CONCLUSIONS

The principle advantage of this new E-PERM radon measurement method is its ability to give immediate results, even in the field. This capability circumvents the delays usually involved in sending other passive devices (e.g., charcoal canisters of alpha-track monitors) to a central laboratory for analysis. E-PERM also usually have a cost advantage over other passive type devices, especially where their ability to make many successive measurements with the same electret utilized. All of the R&D goals of the NYSERDA Agreement were accomplished. Indeed, the development of the electret ion chamber technology involved has progressed well beyond the project goals and has become commercially viable. It is now widely accepted and used throughout the world.

9.0 REFERENCES

- Kotrappa, P.; Dempsey, J.C.; Hickey, J.R.; Development of an Electret Passive Environmental Radon Monitor. New York State Energy Research Development Authority: Report No. 86-13; 1987.
- Kotrappa, P.; Dempsey, J.C.; Hickey, J.R.; Stieff, L.R.; An Electret Passive Environmental ²²²Rn Monitor Based on Ionization Measurement. Health Phys. 54:47-56; 1988.
- Kotrappa, P.; Dempsey, J.C.; Ramsey, R.W.; Stieff, L.R.; A Practical E-PERM[™] (Electret Passive Environmental Radon Monitor) System for Indoor ²²²Rn Measurement. Health Phys. 58:461-467; 1990.
- Kotrappa, P.; Dempsey, J.C.; Stieff, L.R.; Development of Electret Technology to Measure Indoor Radon - Daughter Concentration. UNC/GJ-TMC-5, UC-511; May 1989.
- 5. Kotrappa, P.; Jester, W.A.; The Measurement of Dissolved radon-222 in Water Using E-PERM Radon Monitors and Comparison with a Standard Liquid Scintillation Procedure.
- 6. Private Communication. R. Hopper; USEPA Office of Radiation Protection, Las Vegas, NV Facility (1990).
- 7. Dixon, W.J.; Massey, F.J.; Introduction to Statistical Analysis. McGraw Hill Books, 1957.
- 8. Private Communication, A.C. George, Radiation Physics Division, EML, DOE. New York. Jan. 1990.
- 9. Kotrappa, P.; Stieff, L.R.; Elevation Correction Factors for E-PERM Radon Monitors. Accepted for Publication in Health Physics; 1991.
- Kotrappa, P.; Hobbs, T.G.; Calibration and Performance Evaluation of Electret Ion Chamber System for Environmental Gamma Radiation Levels Around Nuclear Installations. Presented at Health Physics Society Meeting: Anaheim, CA, June 1990 (available from authors).
- 11. Bogen, K.T.; Goldin, A.S.; Population Exposure to External Natural Radiation Background in the United States. USEPA. Technical Note ORP, SEPD-80-12.
- 12. Thomas, J.W., Thoron determination by a two filter method. USAEC Health and Safety Report HASL-TM-71-1; 1971.

TABLE 1 ABBREVIATIONS AND NOTATIONS

#	Electret number
ACF	The average calibration factor of the subgroup
AMPV	The average MPV of the subgroup
ARC	Average radon concentration in pCi L ⁻¹
CF	Calibration factor
D	The date of manufacture
DV	The difference between IV and FV in volts
FV	Final voltage of the electret in volts
IV	Initial voltage of the electret in volts
LT	Long-term
MPV	The average of IV and FV in volts
PCV	The coefficient of variation in percent
RC	Radon concentration in pCi L ⁻¹
SD	The standard deviation of the corresponding subgroup
ST	Short-term

TABLE 2 SHORT-TERM ELECTRET STABILITY TEST*

Electret <u>Number</u>	Volts on <u>1/17/90</u>	Volts on 5/10/90	Electret <u>Number</u>	Volts on <u>1/17/90</u>	Volts on <u>5/10/90</u>
9101	471	471	8726	414	414
8597	515	516	8360	466	468
7853	460	460	8612	410 •	409
8701	435	435	7632	480	477
8361	551	551	8808	482	482
8636	468	468	4377	424	423
8708	525	524	8720	499	499
8705	569	569	8830	415	415
8353	393	393	8775	469	468
8588	536	537	8767	531	532
8048	482	480	8375	377	375
8653	430	429	8479	550	551
7122	452	450	8596	493	493
8342	523	523	8389	507	505
8615	479	478	8495	483	483

*Performed by R. Hopper $^{(6)}$ at the EPA Los Almos Laboratory.

E-PERM No.	Initial Voltage (V)	Final Voltage (V)	Voltage Drop (V)	Mid- Point voltage (V)	Calibration factor (v/pCiL ⁻¹ d)	Average Calibration factor and (SD)
1 2 3 4 5	300 297 286 296 303	132 128 97 130 136	168 169 189 166 167 Mean SD	216213238213210218± 10	1.7560 1.7660 1.9751 1.7360 1.7449	1.7952 (0.0888)
6 7 8 9 10	403 407 395 408 389	216 215 202 217 196	187 192 193 191 193 Mean SD	310 311 299 313 <u>293</u> 305 ± 8	1.9547 2.0069 2.0169 1.9961 2.0720	2.0095 (0.0370)
11 12 13 14 15	506 493 504 502 497	317 292 305 300 304	189 201 199 202 193 Mean SD	$412 \\ 393 \\ 404 \\ 401 \\ 401 \\ 402 \\ \pm 6$	$1.9751 \\ 2.1009 \\ 2.0801 \\ 2.1131 \\ 2.0720$	2.0679 (0.0481
16 17 18 19 20	598 604 600 594 601	380 400 396 381 392	218 204 204 213 209 Mean SD	489 502 498 488 <u>497</u> 485 ± 5	2.2781 2.1319 2.1319 2.2259 2.1841	2.1900 (0.0555)
21 22 23 24 25	747 749 742 742 751	525 525 518 500 534	222 224 224 242 217 Mean SD	$636 \\ 637 \\ 630 \\ 621 \\ 643 \\ 643 \\ \pm 7$	2.3199 2.3410 2.3410 2.5289 2.2681	2.3599 (0.0888)

TABLE 3 CALIBRATION DATA FOR SHORT-TERM E-PERMS

Linear Regression Equation between average of mid-point voltage (MPV) and average calibration factor (CF) CF = 1.5692 + 0.00125 x MPV (Correlation Coefficient = 0.994)

.

				•		2		
E-PERM No.	Initial Voltage (V)	Final Voltage (V)	Voltage Drop (V)	Mid- Point voltage (V)	(Calibration factor v/pCiL ⁻¹ d)	Average Calibration factor and (SD)	-
			<u>`</u>		· · · ·			-
1 2 3	749 748 744	651 652 645	98 96 99 Mean SD	700 700 <u>695</u> 698 ± 2		0.22030 0.21578 0.22252	0.21952 (0.0281)	
4 5 6	642 650 652	557 554 557	96 96 95 Mean SD	605 602 <u>605</u> 604 ± 2		0.21360 0.21578 0.21360	0.21434 (0.0104)	
7 8 9	506 493 504	317 292 305	189 201 199 Mean SD	$412 \\ 393 \\ 404 \\ 505 \\ \pm 2$		0.20679 0.21360 0.21360	0.21131 (0.00322)	
10 11 12	452 450 449	359 361 358	93 89 91 Mean SD	$406 \\ 406 \\ 404 \\ 405 \\ \pm 1$		0.20909 0.2001 0.20561	0.20757 (0.074)	
13 14 15	352 348 350	262 255 264	90 93 86 Mean SD	$307 \\ 302 \\ 307 \\ 305 \\ \pm 2$		0.20231 0.20909 0.19329	0.20561 (0.00363)	
16 17 18	251 251 252	172 166 168	79 85 84 Mean SD	212 209 <u>210</u> 210 ± 1		0.1776 0.1911 0.1887	0.18581 (0.00592)	

TABLE 4 CALIBRATION DATA FOR LONG-TERM E-PERMS*

Linear Regression Equation between average of mid-point voltage (MPV) and average calibration factor (CF) $CF = 0.1780 + .0000621 \times MPV$ (Correlation Coefficient = 0.957)

Date of Manufacture	Initial voltage (V)	Final Voltage (V)	Voltage Diff. (V)	Coef. of Variation (%)
9 Nov	752	593	159	
9 Nov	752	598	154	2.9
10 Nov	753	597	156	
10 Nov	760	599	161	2.8
8 Dec	759	598	161	
8 Dec	756	584	172	5.9
12 Dec	756	590	166	
12 Dec	751	572	179	6.6
3 Dec	753	582	171	
3 Dec	751	574	165	3.0
5 Nov	758	584	174	
5 Nov	753	588	165	4.8
6 Dec	753	598	155	
6 Dec	755	584	171	8.7
4 Nov	758	584	174	
4 Nov	753	585	168	3.1
1 Dec	753	589	164	
1 Dec	757	594	163	0.5
13 Dec	751	569	182	
13 Dec	752	589	163	9.8
5 Dec	754	593	161	
5 Dec	758	596	162	0.5
28 Nov	752	574	178	
28 Nov	752	584	168	5.1
9 Dec	757	583	174	
9 Dec	753	598	161	6.9
2 Dec	757	580	177	
2 Dec	762	580	182	2.5
10 Dec	753	574	179	
10 Dec	758	587	171	<u>4.0</u>
		Mean Values	168.3 SD ± 8.1 (4.8)	4.5 %)

TABLE 5 PERFORMANCE OF RANDOMLY CHOSEN SHORT-TERM E-PERMS

		the second s			
Test No.	Electret Type	Initial Voltage	Final Voltage	Radon Conc.	Ave. Conc. (SD)
1 2 3 4	ST ST ST ST	626 680 684 638	314 365 365 305	85.5** 84.7 84.7 91.3	86.6 3.1%
5 6 7 8 9	LT LT LT LT LT	651 652 645 557 551	621 622 613 527 519	81.8 81.8 87.5 84.1 89.9	
10 11 12 13 14 15		460 455 458 359 361	431 425 428 330 332	84.1 83.6 86.6 86.2 86.1	85.0 2.9%
16 17 18 19	LT LT LT LT LT	358 262 255 264	330 234 227 238	83.2 85.7 85.9 83.2	۰ پال ۲

TABLE 6 INTERCOMPARISON OF LONG-TERM AND SHORT-TERM E-PERMS*

*All E-PERMs introduced simultaneously into the radon chamber for a period of 1 day and 16 hours.

**The average chamber concentration were 86 pCi L^{-1} .

TABLE 7 EFFECT OF 100% RH ON ELECTRET VOLTAGE

lectret No.	Initial Voltage	After 7 days* (volts)	After 14 days (volts)	Electret No.	Initial Voltage	After 7 days (volts)	After 14 days (volts)
$\Gamma 1$	713	709	711	ST1	708	704	704
T2	747	746	747	ST2	704	704	706
T3	753	753	757	ST3	725	723	725
T4	723	714	714	ST4	717	711	711
Τ5	741	739	743	ST5	740	727	729
Τ6	749	750	754	ST6	728	729	730
$\Gamma 7$	744	734	737	ST7	714	714	602
T8	747	744	742	ST8	706	702	702
T9	738	738	742	ST9	719	715	717
r10	743	742	745	ST10	714	711	710
[11]	716	713	714	ST11	713	711	712
[12	742	742	746	ST12	<i>L</i> 0 <i>L</i>	706	708

* days of exposure to 100% RH at room temperature

TABLE 8 - CORRECTIONS FOR BACKGROUND GAMMA RADIATION BY STATE

This table lists the average background gamma radiation (BG) by state* for "S" E-PERM chambers and the corresponding BG Correction in equivalent (EQ.) pCiL. These BG Corrections must be subtracted from the apparent radon concentration values when calculating E-PERM radon concentrations. Lower elevation (LE) and higher elevation (HE) BG values are listed for some states.

	BG	BG Correction		BG	BG Correction
State	(uR/h)	(Eq. pCiL)	State	(uR/H)	(Eq. pCiL)
					• •
AL (LE)	6.86	0.6	MT	11.31	1.0
ALIHÉ	10.04	0.9	NE	10.40	0.9
AK	9.85	0.9	NV	12.10	1.1
AZ	11.20	1.0	NH	10.00	0.9
AR (LE)	6.85	0.6	NJ (LE)	6.90	0.6
AR (HÉ)	10.36	0.9	NJ (HE)	9.87	0.9
CA	10.06	0.9	NM	12.73	1.1
CO	13.05	1.1	NY	9.94	0.9
CT	9.88	0.9	NC(LE)	6.82	0.6
DF	6.81	0.6	NC (HE)	10.18	0.9
DC	8 49	0.7	ND ND	10.36	0.9
FI	6.82	0.6	OH	10.04	0.9
GA (I F)	6.86	0.0	OK (IF)	6.93	0.6
GA (HE)	10.10	0.0	OK (HE)	10.30	0.0
UN (ILL)	9.81	0.9	OR (ILL)	10.13	0.9
TD III	11 40	1.0	PA	7.02	0.6
	11.40	1.0	PA**	9 94	0.9
Π	10.07	0.9	RI	9.84	0.9
IN	11 39	1.0	SC (LE)	6.82	0.6
ΤΔ	10.14	0.9	SC (HE)	10.00	0.9
KS	10.31	0.9	SD (IIII)	10.48	0.9
KY (LF)	6.86	0.6	TN (LE)	6.87	0.6
KY (HE)	10.08	0.9	TN (HE)	10.12	0.9
I A	6.82	0.6	TX(LE)	6.86	0.6
ME	9.97	0.9	TX (HE)	10.68	0.9
	6.00	0.0	T IT	10.50	1 1
MD (LE)	0.82	0.0		12.52	1.1
MD (HE)	9.90	0.9		9.90	0.9
MA	9.93	0.9	VA (LE)	0.82	0.6
MI	10.10	0.9	VA (HE)	10.18	0.9
MIN	10.25	0.9	WA	9.96	0.9
MS	6.87	0.6	WV	10.20	0.9
MO (LE)	6.90	0.6	WI	10.09	0.9
MO (HE)	10.06	0.9	WY	13.33	1.2

* Taken from Table A-1 in "Population Exposure to External Natural Radiation Background in the USA" by T. Bogen and S. Goldin. EPA technical Note-OP/SPED-80-12, April, 1981.

**Urban average value (preferred value for PA).

E-PERM Type	Exposure Period (days)	LLD Range* (pCiL ⁻¹)	LLD Range (pCiL ⁻¹ -days)
ST	2	0.5 to 0.8	1 to 1.6
ST	7	0.3	2.1
ST	60	0.2	12
LT	30	0.5 to 0.7	15 to 21
LT	90	0.3	27
LT	365	0.2	73

TABLE 9 LOWER LIMIT OF DETECTION FOR LONG AND SHORT-TERM E-PERMS

*See Section 5.5 for the definition of LLD used here

		Measured	Target	MA	RE	
SET NO.	Detector	Conc. (Mc)	Conc. (Tc)	For Tc's	For TL's	MARE*
CODE	Number	(pCiL ⁻¹)	(pCiL ⁻¹)	2 - 5	2 - 17	MEAN
1.1.1 JLLJW	978025 978026 978027 978028	$10.600 \\ 11.000 \\ 12.800 \\ 12.100$	12.523 12.523 12.617 12.617		0.154 0.122 0.015 0.041	0.083
2.1.2	266560	03.300	03.512	0.060		
HMJTM	266561 266563 266564	03.300 17.000 15.900	03.512 14.283 14.283	0.060	0.190 0.113	0.106
2.2.2 HVVSV	319300 319301 319303 319304	02.700 02.900 17.300 17.300	03.512 03.512 14.283 14.283	0.231 0.174	0.211 0.211	
						0.207
3.1.2 ВНЈТЈ	784435 784436 784437 784438	13.600 13.300 13.500 13.200	14.006 14.006 14.307 14.307		0.029 0.050 0.056 0.077	
3.2.2	358620	13.700	14.006		0.022	0.053
BLWBT	358621 358623 358624	$13.000 \\ 14.400 \\ 14.600$	14.006 14.307 14.307		0.072 0.007 0.021	
						0.030
4.1.3 SLDHZ	757505 757506 757507 757508	07.600 05.400 13.600 11.300	05.161 05.161 14.351 14.351	0.473 0.046	0.052 0.213	
4.2.3	496870	04.700	05.161	0.089		0.196
STSHM	496871 496872 496873	06.800 14.200 13.800	05.161 14.351 14.351	0.318	0.011 0.038	
		22.000				0.114

TABLE 10 - EPA/RMPP ROUND 6 LONG-TERM BLIND TEST RESULTS

TABLE 10 (continued)	Magazine	Target	,		
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For T 2 - 5	c's For TL's 12 - 17	MARE* MEAN
4.3.3 VHSFD	567190 567191 567191 567193	05.000 04.500 14.700 15.200	05.161 05.161 14.351 14.351	0.031 0.128	0.024 0.059	0.061
5.1.4 FVZWT	515800 515801 515802 515803	06.000 07.400 17.400 16.800	05.106 05.106 14.380 14.380	0.175 0.449	0.210 0.168	0.251*
5.2.4 LHWWD	934155 934156 934157 934159	$05.100 \\ 05.000 \\ 14.600 \\ 14.900$	$05.106 \\ 05.106 \\ 14.380 \\ 14.380$	0.001 0.021	0.015 0.036	0.018
5.3.4 MBBVT	215335 215336 215338 215339	$05.100 \\ 05.900 \\ 14.600 \\ 14.400$	05.106 05.106 14.380 14.380	0.001 0.155	0.015 0.001	0.043
5.4.4 ZMDMW	304260 304261 304262 304264	$05.100 \\ 04.700 \\ 14.500 \\ 15.400$	05.106 05.106 14.380 14.380	0.001 0.080	0.008 0.071	0.040
6.1.7 BFJVJ	637030 637031 637032 637033	$04.700 \\ 04.600 \\ 18.100 \\ 14.800$	05.048 05.048 14.398 14.398	0.069 0.089	0.257 0.028	0.111
6.2.7 HFVWV	694605 694606 694607 694608	05.200 00.000 17.200 14.700	05.048 Damaged 14.398 14.398	0.030 Damag	ed 0.195 0.021	0.082
6.3.7 HWZHV	884175 884176 884178 884179	05.000 05.200 14.700 14.500	05.048 05.048 14.398 14.398	0.010 0.030	0.021 0.007	0.017

TABLE 10 ((continued)		· · · ·			
SET NO. CODE	Detector Number	Measured Conc. (Mc) (pCiL ⁻¹)	Target Conc. (Tc) (pCiL ⁻¹)	M For To 2 - 5	ARE s For TL's 12 - 17	MARE* MEAN
6.4.7 JHWSJ	401705 401706 401707 401708	03.700 04.100 12.800 12.800	05.048 05.048 14.398 14.398	0.267 0.188	0.111 0.111	0.169
6.5.7 SHSLM	993160 993161 993162 993163	$\begin{array}{c} 04.400 \\ 04.600 \\ 14.500 \\ 14.100 \end{array}$	05.048 05.048 14.398 14.398	0.128 0.089	0.007 0.021	0.061
6.6.7 ZFJFM	471665 471666 471668 471669	$\begin{array}{c} 04.700 \\ 04.700 \\ 14.300 \\ 14.400 \end{array}$	05.048 05.048 14.398 14.398	0.069 0.069	0.007 0.000	0.036
6.7.7 SJFBB	527230 527231 527233 527234	04.700 05.200 14.400 15.300	05.048 05.048 14.398 14.398	0.069 0.030	0.000 0.063	0.040
7.1.8 HBFHJ	502100 502101 502102 502104	04.600 04.300 14.200 14.900	04.423 04.423 14.510 14.510	0.040 0.028	0.021 0.027	0.029
7.2.8 LFWMV	103485 103486 103487 103488	05.600 04.500 15.200 14.700	04.423 04.423 14.510 14.510	0.266 0.017	0.048 0.013	0.086
7.3.8 LZBMV	534390 534391 534392 534394	03.800 04.100 15.000 14.100	04.423 04.423 14.510 14.510	0.141 0.073	0.034 0.028	0.069
7.4.8 MFTTW	570120 570121 570123 570124	04.700 05.200 13.700 16.600	04.423 04.423 14.510 14.510	0.063 0.176	0.056 0.144	0.110

TABLE 10 (continued)						
SET NO. CODE	Detector Number	Measured Conc. (Mc) (pCiL ⁻¹)	Target Conc. (Tc) (pCiL ⁻¹)	For 2 - 5	MARE Tc's For TL's 5 12 - 17	MARE* MEAN	
7.5.8 ZFMHV	994020 994021 994023 994024	04.800 04.100 04.900 20.900	04.423 04.423 14.510 14.510	0.085 0.073	5 3 0.027 0.440	0.156	
7.6.8 MWMHJ	746445 746446 746448 746449	02.800 03.900 13.900 12.900	04.423 04.423 14.510 14.510	0.367	0.042 0.042	0.160	
7.7.8 WLDSW	333935 333936 333937 333938	$12.800 \\ 06.300 \\ 15.100 \\ 14.300$	04.423 04.423 14.510 14.510	1.894 0.424	4 4 0.041 0.014	0.593*	
7.8.8 VFBJV	189720 189721 189722 189723	04.700 05.200 14.700 15.700	04.423 04.423 14.510 14.510	0.063	3 0.013 0.082	0.083	
8.1.1 TWHMZ	919015 919016 919017 919018	04.300 04.000 14.600 16.200	04.385 04.385 14.692 14.692	0.019 0.088	0.006 0.103	0.054	
9.1.6 DZFMZ	672485 672486 672488 672489	04.200 04.600 14.800 14.500	04.187 04.187 14.873 14.873	0.000	3 0.005 0.025	0.033	
9.2.6 FFBFD	879255 879256 879257 879259	04.100 04.000 13.900 14.200	04.187 04.187 14.873 14.873	0.02 0.04	0.065 0.045	0.044	
9.3.6 MHMTJ	938820 938821 938823 938824	04.000 04.000 14.400 14.500	04.187 04.187 14.873 14.873	0.04 0.04	5 0.032 0.025	0.037	

TABLE 10	(continued)	Marra	T	MADE		
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
9.4.6 WFDLZ	730920 730921 730922 730923	04.200 04.400 21.100 14.800	04.187 04.187 14.873 14.873	0.003 0.051	0.419 0.005	0.119
9.5.6 TFJDV	532835 532836 532838 532839	03.400 03.300 13.500 14.100	04.187 04.187 14.873 14.873	0.188 0.212	0.092 0.052	0.136
9.6.6 FJFLH	512970 512971 512972 512973	04.000 04.300 14.200 14.400	04.187 04.187 14.873 14.873	0.045 0.027	0.045 0.032	0.037
10.1.1 WZDZM	140115 140116 140117 140118	04.300 04.200 17.300 19.300	04.162 04.162 14.899 14.899	0.033 0.009	0.161 0.295	0.125
11.1.5 DSZZV	774380 774381 774382 774384	04.400 04.500 15.000 14.200	04.555 04.555 14.929 14.929	0.034 0.012	0.005 0.049	0.025
11.2.5 HZZBS	648685 648686 648688 648689	04.300 04.400 13.600 13.200	04.555 04.555 14.929 14.929	0.056 0.034	0.089 0.116	0.074
11.3.5 JJVWM	811400 811401 811403 811404	04.400 04.300 16.100 14.300	04.555 04.555 14.929 14.929	0.034 0.056	0.078 0.042	0.053
11.4.5 JWZTV	679555 670556 670558 670559	03.900 04.100 14.500 15.600	04.555 04.555 14.929 14.929	0.144 0.100	0.029 0.045	0 079

TABLE 10 (continued)		Measured	Target	MAR	MARE	
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
11.5.5 MMTMZ	379195 379196 379197 379199	03.000 02.500 16.000 15.100	04.555 04.555 14.929 14.929	0.341 0.451	0.072 0.011	0.219
12.1.6 MHWBT	882360 882361 882362 882363	04.100 04.300 00.000 17.800	04.353 04.353 Damaged 15.050	0.058 0.012	0.183	0.084
12.2.6 MMMTS	324985 324986 324987 324989	04.000 03.700 16.100 15.000	04.353 04.353 15.050 15.050	0.081 0.150	0.070 0.003	0.076
12.3.6 SBLZF	142560 142561 142562 142563	05.600 05.600 17.300 16.400	04.353 04.353 15.050 15.050	0.286 0.286	0.149 0.090	0.203
12.4.6 TSMHM	848915 848916 848918 848919	03.700 04.100 18.200 17.400	04.353 04.353 15.050 15.050	0.150 0.058	0.209 0.156	0.143
12.5.6	631745 631746 631748	03.70 03.50 17.70	04.453 04.353 15.050	0.150 0.196	.176	0.174
12.6.6	968190 968191 968192 968194	04.000 04.300 18.700 18.600	04.353 04.353 15.050 15.050	0.081 0.012	0.243 0.236	0.143
13.1.6 BHVWF	513695 513696 513697 513698	15.300 14.800 14.000 14.200	15.273 15.273 15.086 15.086		0.002 0.031 0.072 0.059	0.041

•

TABLE 10	(continued)	Maria	T	24		
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
13.2.6 BTDMJ	794645 794646 794648 794649	14.700 15.800 15.000 14.700	15.273 15.273 15.086 15.086		0.038 0.034 0.006 0.026	0.026
13.3.6 BVDLB	431540 431541 431543 431544	14.300 14.400 13.400 13.700	15.273 15.273 15.086 15.086		0.064 0.057 0.112 0.092	0.081
13.4.6 THHTJ	620610 620611 620613 620614	$ \begin{array}{r} 15.000 \\ 12.000 \\ 13.000 \\ 14.000 \\ \end{array} $	15.273 15.273 15.086 15.086		0.018 0.214 0.138 0.072	0.111
13.5.6 TFBMW	950085 950086 950087 950088	14.900 15.100 13.800 14.200	15.273 15.273 15.086 15.086		0.024 0.011 0.085 0.059	0.045
13.6.6 TMZZZ	838065 838066 838068 838069	14.800 14.800 14.900 14.000	15.273 15.273 15.086 15.086		0.031 0.031 0.012 0.072	0.037
14.1.1 HSMJS	275540 275541 275542 275544	05.100 05.100 15.000 14.600	05.394 05.394 15.839 15.839	0.054 0.054	0.053 0.078	0.060
15.1.1 HMZJT	277280 277281 277282 277283	15.100 15.100 16.100 15.200	15.588 15.588 15.671 15.671		0.031 0.031 0.027 0.030	0.030

		Measured	Target	MAF	Æ	
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
1.1.1 SMBHL	787290 787291 787292 787293	11.200 10.400 10.500 11.700	11.397 11.397 11.829 11.829		0.017 0.087 0.112 0.011	0.057
2.1.4 DFTHT	779330 779331 779333 779334	05.200 04.500 11.000 10.700	05.518 05.518 12.735 12.735	0.058 0.185	0.136 0.160	0.135
2.2.4 FVDHW	150990 150991 150992 150993	05.200 04.600 11.900 10.900	05.518 05.518 12.735 12.735	0.058 0.166	0.066 0.144	0.108
2.3.4 SBFBT	270715 270716 270717 270719	07.800 07.800 13.000 13.400	05.518 05.518 12.735 12.735	0.414 0.414	0.021 0.052	0.255*
2.4.4 ZJMHS	603005 603006 603007 603009	05.200 05.700 11.700 11.400	05.518 05.518 12.735 12.735	0.058 0.033	0.081 0.105	0.069
3.1.1 JWMVS	179085 179086 202230 202231	19.200 23.500 06.600 04.100	13.124 13.124 05.394 05.394	0.224 0.240	0.463 0.791	0.429*
4.1.2 ZDSTB	862590 862591 862593 862594	04.500 03.800 13.500 12.700	04.802 04.802 14.095 14.095	0.063 0.029	0.042 0.099	0.103

TABLE 11 - EPA/RMPP ROUND 6 SHORT-TERM BLIND TEST RESULTS

		Measured	Target	MAI	RE	
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
5.1.3 JJHBL	716570 716571 716572 716574	05.200 04.500 16.400 14.300	05.200 05.202 14.136 14.136	0.000 0.135	0.060 0.012	0.077
5.2.3 TTLLW	416995 416696 416698 416699	04.000 04.300 13.000 13.200	05.202 05.202 14.136 14.136	0.231 0.173	0.080 0.066	0.138
5.3.3	391415 391416 391417 391419	04.600 04.600 13.800 13.800	05.202 05.202 14.136 14.136	0.116 0.116	0.024 0.024	0.076
6.1.8 FTZTB	682675 682676 682678 682679	02.600 02.500 12.400 12.100	02.602 02.602 14.149 14.149	0.001 0.039	0.124 0.145	0.077
6.2.8 FZLBL	809470 809471 809473 809474	02.400 02.900 14.200 14.700	02.602 02.602 14.149 14.149	0.078 0.115	0.004 0.039	0.059
6.3.8 LVBWB	299660 299661 299662 299663	03.700 02.100 13.700 13.500	02.602 02.602 14.149 14.149	0.422 0.193	0.032 0.046	0.173
6.4.8 SFZLV	791155 7991156 791157 791159	02.000 02.400 11.900 12.900	02.602 02.602 14.149 14.149	0.231 0.078	0.159 0.088	0.139
6.5.8 TDHJZ	887200 887201 887202 887204	02.000 02.000 13.100 13.100	02.602 02.602 14.149 14.149	0.231 0.231	0.074 0.074	0.153

0

đ,

		Measured	Target	MAI	RE	
SET NO.	Detector	Conc. (Mc)	Conc. (Tc)	For Tc's	For TL's	MARE*
CODE	Number	(pCiL ⁻¹)	(pCiL ⁻¹)	2 - 5	12 - 17	MEAN
6.6.8 WFZVF	172820 172821 172822 172824	02.300 02.400 13.300 13.900	02.602 02.602 14.149 14.149	0.116 0.078	0.060 0.018	0.068
6.7.8 WLMTJ	594780 594781 594782 594783	03.300 02.300 11.800 13.900	02.602 02.602 14.149 14.149	0.268 0.116	0.166 0.018	0.129
6.8.8 HSWFS	760765 760766 760767 760768	02.800 02.100 13.500 13.500	02.602 02.602 14.149 14.149	0.076 0.193	0.046 0.046	0.090
7.1.11 FFVDZ	330110 330111 330112 330113	02.900 02.900 17.500 15.700	03.512 03.512 14.283 14.283	0.174 0.174	0.225 0.099	0.168
7.2.11 HLVZZ	338420 388421 388423 388424	05.700 03.000 15.300 16.900	03.512 03.512 14.283 14.283	0.623 0.146	0.071	0.256*
7.3.11 SDMWH	445460 445461 445462 445464	04.400 03.200 16.400 16.300	03.512 03.512 14.283 14.283	0.253 0.089	0.148 0.141	0.158
7.4.11 THLZJ	581950 581951 581952 581953	02.500 02.400 16.000 16.411	03.512 03.512 14.283 14.283	0.288 0.317	0.120 0.127	0.213
7.5.11 TSVTB	955745 955746 955747 955748	03.000 03.000 13.300 14.000	03.512 03.512 14.283 14.283	0.146 0.146	0.069 0.020	0.095

•

	Measured		Target	MA		
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
7.6.11 VLDSZ	259300 259301 259302 259304	04.500 03.500 15.000 15.000	03.512 03.512 14.283 14.283	0.281 0.003	0.050 0.050	0.096
7.7.11 WJJZB	830825 830826 830827 830829	$02.400 \\ 02.500 \\ 15.000 \\ 15.000$	03.512 03.512 14.283 14.023	0.317 0.288	0.050 0.050	0.176
7.8.11 ZHMWB	178715 178716 178718 178719	02.900 02.800 14.600 15.500	03.512 03.512 14.283 14.283	0.174 0.203	0.022 0.085	0.121
7.9.11 WWTSD	129755 129756 129758 129759	02.800 02.800 17.800 17.000	03.512 03.512 14.283 14.283	0.203 0.203	0.246 0.190	0.211
7.10.11 TVDJZ	231525 231526 231527 231528	03.000 02.900 17.500 18.100	03.512 03.512 14.283 14.283	0.146 0.174	0.225 0.267	0.203
7.11.11 TLSMW	873180 873181 873183 873184	02.900 04.400 15.700 17.400	03.512 03.512 14.283 14.283	0.174 0.253	0.099 0.218	0.186
8.1.3 BBMLF	765170 765171 765173 765174	02.300 02.200 12.900 14.500	02.775 02.775 14.347 14.347	0.171 0.207	0.101 0.011	0.122
8.2.3 BVLBM	778150 778151 778153 778154	03.200 02.200 13.900 14.800	02.775 02.775 14.347 14.347	0.153 0.207	0.031 0.032	0.106

		Measured	Target	MAI	MARE	
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
8.3.3 WBBWM	279330 279331 279332 279334	02.400 02.300 13.800 13.500	02.775 02.775 14.347 14.347	0.135 0.171	0.038 0.059	0.101
9.1.5 FVBBB	172900 172901 172903 172904	06.900 06.100 14.300 13.800	06.304 06.304 14.562 14.562	0.095 0.032	0.018 0.052	0.049
9.2.5 JLSVJ	980975 980976 980977 980979	06.100 04.900 14.500 13.400	06.304 06.304 14.562 14.562	0.032 0.223	0.004 0.080	0.085
9.3.5 LZMDM	686575 686576 686577 686578	05.300 05.200 15.400 13.800	06.304 06.304 14.562 14.562	0.159 0.175	0.058 0.052	0.111
9.4.5 WMDFF	179885 179856 179857 179879	05.800 05.100 13.600 12.900	06.304 06.304 14.562 14.562	0.080 0.191	0.066 0.114	0.113
9.5.5 ZSMHM	818095 818096 818097 818098	05.800 05.200 12.600 15.400	06.304 06.304 14.562 14.562	0.080 0.175	0.135 0.058	0.112
10.1.1 WMMDT	402415 402416 402417 402419	04.400 04.400 14.200 14.200	04.385 04.385 14.672 14.692	0.003 0.003	0.033	Х.
						0.018

5

*Failure value (i.e., > 0.250)

		Measured	Target	MAI	RE	
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
11.1.1 MDFSD	787015 787016 787017 787018	07.400 05.000 14.200 14.900	04.555 04.555 14.929 14.929	0.625 0.098	0.049 0.002	0.193
12.1.14 FFBLL	354315 354316 354317 354319	02.700 02.400 14.400 13.500	03.019 03.019 15.064 15.064	0.106 0.205	0.044 0.104	0.115
12.2.14 DLBZM	485475 485476 485477 485479	01.800 02.300 14.600 15.500	03.019 03.019 15.064 15.064	0.404 0.238	0.031 0.029	0.175
12.3.14 DMJDL	193930 193931 193932 193933	02.900 02.900 14.000 15.300	03.019 03.019 15.064 15.064	0.040 0.040	0.071 0.016	0.041
12.4.14 HBHDB	464230 464231 464233 464234	03.400 02.700 14.200 14.300	03.019 03.019 15.064 15.064	0.126 0.106	0.057 0.051	0.085
12.5.14 LHMVW	395110 395111 395112 395114	02.100 02.600 15.000 15.200	03.019 03.019 15.064 15.064	0.304 0.139	0.004 0.009	0.114
12.6.14 LSWDW	832350 832351 832353 832354	02.600 02.500 14.500 14.200	03.019 03.019 15.064 15.064	0.139 0.139	0.037 0.057	0.101
12.7.14 SZTVV	215305 215306 215308 215309	02.600 02.200 14.900 14.700	03.019 03.019 15.064 15.064	0.139 0.271	0.011 0.024	0.111

		Measured	Target	MAI	RE	
SET NO.	Detector	Conc. (Mc)	Conc. (Tc)	For Tc's	For TL's	MARE*
CODE	Number	(pCiL ⁻¹)	(pCiL ⁻¹)	2 - 5	12 - 17	MEAN
12.8.14	163305	02.500	03.019	0.172		
TBJHZ	163306	02.300	03.109	0.238		
	163308	15.900	15.064		0.055	
	103309	15.000	15.064		0.004	0.117
						0.117
12.9.14	149180	02.500	03.019	0.172		
TWBFB	149181	02.400	03.019	0.205	0.062	
	149182	15.500	15.064		0.002	
						0.117
12 10 14	618205	02 400	02 010	0.205		
12.10.14 TWFHW	648295	02.400	03.019	0.203		
1 11 11 11 11	648297	15.600	15.064	0.250	0.036	
	648298	15.000	15.064		0.004	0.101
						0.121
12.11.14	731885	02.300	03.019	0.238		
VZHJD	731886	02.300	03.019	0.238		
	731888	14.000	15.064		0.071	
	/31889	14.800	15.064		0.018	0.141
12.12.14	203865	02.300	03.019	0.238		
WWBAA	203866	02.000	03.019	0.338	0.016	
	203868	15.000	15.064		0.004	
						0.149
12 13 14	353705	03 300	03 109	0.093		
ZDFLT	353706	03.100	03.019	0.027		
	353707	14.000	15.064		0.071	
	353708	14.500	15.064		0.037	0.057
						0.037
12.14.14	199910	02.300	03.019	0.238		
ZSLDZ	199911	02.100	03.019	0.304	0.007	
	199913	13.600	15.064		0.097	
	177714	14.100	15.004		0.004	0.176
13.1.8	219870	05.400	04.547	0.188		
HBHHL	219871	05.000	04.547	0.100	0.207	
	219870	20.800	15.073		0.307	
	217074	20.000	15.075		0.500	0.244

		Measured	Target	MAR	E	
SET NO.	Detector	Conc. (Mc)	Conc. (Tc)	For Tc's	For TL's	MARE*
CODE	Number	$(pCiL^{-1})$	$(pCiL^{-1})$	2 - 5	12 - 17	MEAN
13.2.8 HTTBD	597660 597661 597662 597663	04.000 04.500 19.200 20.900	04.547 04.547 15.073 15.073	0.120 0.010	0.274 0.387	0.198
13.3.8 JTLDS	515985 515986 515987 515989	03.800 04.100 17.500 19.300	05.547 04.547 15.073 15.073	0.164 0.098	0.161 0.280	0.176
13.4.8 MBZDL	922215 922216 922217 922218	00.000 03.800 25.300 22.500	Damaged 04.547 15.073 15.073	Damaged 0.164	0.670 0.493	0.445*
13.5.8 VDJBZ	655510 655511 655513 655514	03.100 03.100 22.700 25.200	04.418 04.418 15.073 15.073	0.298 0.298	0.506 0.672	0.444*
13.6.8 VVHWJ	149105 149106 149107 149109	03.300 03.200 23.800 24.800	04.547 04.547 15.073 15.073	0.274 0.296	0.579 0.645	0.449*
13.7.8 ZDBVT	729895 729896 729898 729899	03.400 03.400 17.700 17.600	04.547 04.547 15.073 15.073	0.252 0.252	0.174 0.168	0.212
13.8.8 ZJWJW	866605 866606 866607 866608	04.000 04.600 20.500 19.700	04.547 04.547 15.073 15.073	0.120 0.012	0.360 0.307	0.200
14.1.1 BDMTF	843975 843976 843978 843979	14.700 14.700 14.100 15.900	15.273 15.273 15.086 15.086	2 2 - -	0.038 0.038 0.065 0.054	0.049

		Measured	Target	MAI	RE	
SET NO.	Detector Number	Conc. (Mc) $(pCiL^{-1})$	Conc. (Tc)	For Tc's	For TL's 12 - 17	MARE* MFAN
	110111001	() () () () () () () () () () () () () (() () ()	2 0	12 11	
15.1.4 MHHZM	548175 548176 548177 548178	01.900 02.000 14.000 15.000	02.949 02.949 15.191 15.191	0.356 0.322	0.078 0.013	0.192
15.2.4 WFBJM	497745 497746 497747 497749	02.200 02.100 14.400 14.300	02.949 02.949 15.191 15.191	0.254 0.288	0.052 0.059	0.163
15.3.4 WMZLT	664085 664086 664087 664088	02.500 02.300 12.900 14.900	02.949 02.949 15.191 15.191	0.152 0.220	0.151 0.019	0.136
15.4.4 BDZSS	523815 523816 523817 523818	02.500 02.300 15.000 14.500	02.949 02.949 15.191 15.191	0.152 0.220	0.013 0.045	0.108
16.1.7 BSMWD	679595 679596 679597 679599	04.300 03.900 14.000 15.000	04.418 04.418 15.573 15.573	0.027 0.117	0.101 0.037	0.070
16.2.7 НЈТЖТ	871000 871001 871002 871004	03.800 03.600 15.100 15.600	04.418 04.418 15.573 15.573	0.140 0.185	0.030 0.002	0.089
16.3.7 SZJHZ	268970 268971 268972 268973	03.600 03.800 14.500 14.300	04.418 04.418 15.573 15.573	0.185 0.140	0.069 0.082	0.119
16.4.7 THTHF	636350 636351 636353 636354	04.200 03.400 15.400 15.700	04.418 04.418 15.573 15.573	0.049 0.230	0.011 0.008	0.075

1

TABLE 11 (continued)

		Measured	Target	MA		
SET NO. CODE	Detector Number	Conc. (Mc) (pCiL ⁻¹)	Conc. (Tc) (pCiL ⁻¹)	For Tc's 2 - 5	For TL's 12 - 17	MARE* MEAN
16.5.7 TVDLT	690170 690171 690173 690174	03.900 03.600 15.400 16.000	04.418 04.418 15.573 15.573	0.117 0.185	0.011 0.027	0.085
16.6.7		03.600 09.000 16.800 15.100	4.418 4.418 15.573 15.573	0.185 0.095	.079 .030	.097
16.7.7 LLDHB	676545 676546 676547 676548	03.500 03.700 15.900 16.200	04.418 04.418 15.573 15.573	0.208 0.163	0.021 0.040	0.108
17.1.2 LZFJF	768075 768076 768077 768078	04.000 04.200 14.300 15.100	04.774 04.774 15.783 15.783	0.162 0.120	0.094 0.043	0.105
17.2.2 ZLMBZ	206310 206311 206312 206313	$06.100 \\ 05.200 \\ 16.000 \\ 14.500$	04.774 04.774 15.783 15.783	0.278 0.089	0.014 0.081	0.116
18.1.4 HBDDL	742035 742036 742037 742038	04.700 04.900 14.800 14.600	05.394 05.394 15.839 15.839	0.129 0.092	0.066 0.078	0.091
18.2.4 ЈМННV	553440 553441 553442 553443	04.400 04.600 16.300 14.900	05.394 05.394 15.839 15.839	0.184 0.147	0.029 0.059	0.105
18.3.4 LTJJZ	761880 761881 761882 761884	$04.800 \\ 04.600 \\ 14.600 \\ 14.400$	05.394 05.394 15.839 15.839	0.110 0.147	0.078 0.091	0.107

*Failure value (i.e., > 0.250)

		Measured	Target	MA	RE	
SET NO.	Detector	Conc. (Mc)	Conc. (Tc)	For Tc's	For TL's	MARE*
CODE	Number	(pCiL ⁻¹)	(pCiL ⁻¹)	2 - 5	12 - 17	MEAN
18.4.4	132825	04.500	05.394	0.166		
ZFMDD	132836	04.700	05.394	0.129		
	132827	14.700	15.839		0.072	
	132829	14.100	15.839		0.110	
						0.119

TS*	Ove
UMMARY OF ROUND 6 E-PERM RESUL'	
2 S	N
TABLE 1	1 L'LL

Overall E-PERM MARE		0.118			.104		0.112
Average E-PERM MARE	HORT-TERM	0.169	0.067	LONG-TERM	0.132	0.085	OVERALL AVERAGE
of RMs ed		7	~			10	~
No. E-PEF Test		157	158		87	120	518
TARGET RANGE (pCiL)		2 to 5	12 to 15		2 to 5	12 to 15	•

*Only includes results voluntarily submitted by Rad Elec customers (45% of total E-PERMS tested in Round 6.

FIGURE 3 - SECTIONAL DRAWING OF E-PERM IN THE OFF (TOP) AND ON (BOTTOM) POSITIONS

FIGURE 4 - PHOTOGRAPH OF THE SPER-1 ELECTRET READ-OUT INSTRUMENT

FIGURE 5 PHOTOGRAPH OF ELECTRET HOLDER COMPONENTS (White Disk at lower left is the Electret)

FIGURE 6 PHOTOGRAPH OF ASSEMBLED ELECTRET HOLDERS

FIGURE 7, CALIBRATION LINE FOR SHORT-TERM E-PERMS

FIGURE 8, CALIBRATION LINE FOR LONG-TERM E-PERMS

SECTION 10

10.0 APPENDIX 1

Results of E-PERM Evaluations by Other

Several researchers in other laboratories have carried out extensive evaluations of E-PERMs and some have published. This Appendix presents, in summary form, the principle findings of eight of these evaluations. The Appendix is self-contained with respect to references and figures, and all are prefixed with the letter 'A' to avoid confusion with those in the main body of the report.

10.1 INDEX OF APPENDIX EVALUATIONS AND FIGURES

		Pa	ge
Section		Summary	<u>Figure</u>
10.1	Index	74	
10.2	Initial EPA E-PERM Evaluation	75	80
10.3	EPA Test of Long-Term E-PERMs vs. Alpha-Track Device	s 75	81
10.4	Recent EPA Evaluation of Long and Short-Term E-PERMs	76	82
10.5	Pennsylvania DOH Double Blind Test Results	76	83
10.6	NY State DOH E-PERM Evaluation	77	84
10.7	Tests of E-PERMs vs. Charcoal Canister Tests by New York State Energy Authority	77	85
10.8	Results of Austrian Research Center E-PERM Evaluation	78	86
10.9	University of Iowa Double Blind Tests	78	87
10.10	Appendix References	87	

10.2 INITIAL EPA E-PERM EVALUATION

The initial EPA evaluation of the E-PERM system was conducted by R. Hopper (A 1) at the Las Vegas Facility in 1987. The E-PERMs evaluated were prototype units, the only type available at the time. They were fabricated from steel canisters. The units were tested over a wide range of radon concentrations, temperatures and humidities. The evaluation was carried out via mail, i.e., the E-PERMs were exposed by the EPA in Nevada and returned to Rad Elec in Maryland for read out. As seen in Figure A1, the results of the evaluation were very good and Hopper concluded that "These results demonstrate that this instrument can measure radon very accurately under varying conditions with very close agreement between replicate samples. The E-PERM performs well when exposed to both low and high radon concentrations." As a result of these tests, the EPA approved the entry of E-PERMs by any company into their RMP Program.

10.3 EPA EVALUATION OF LONG-TERM VS. ALPHA TRACK

A recent paper by R.J. Lyon, et al. (A2) of the USEPA compares three different makes of alpha track detectors and long-term E-PERMs in a double blind test. Three sets of exposure conditions were used to evaluate the effect of high concentrations (200 pCiL⁻¹ in a radon chamber) for short exposure periods (7 days) and low concentrations (7.6 and 6.2 pCiL⁻¹ of "naturally occurring" radon) for longer exposures (3 to 6 months). The results are shown in Figure A2. At least thirty of each type detector were exposed to each of the three sets of exposure conditions to arrive at the average concentration values shown.

The seven day exposures at the 200 pCiL-1 level were carried out to determine "whether a brief, high radon concentration will produce the same results as an extended exposure to a low radon concentration." The wide swings which occurred in the concentration of the "naturally occurring" radon (0.4 to 60 pCiL⁻¹) during the 180 day exposure period provided a good test of the signal integrating capability of both types of detectors tested. As seen, the E-PERMs responded more accurately than alphatrack devices to both sets of extreme exposure conditions. The EPA authors concluded that "The EIC (E-

PERMs) showed superior precision and accuracy as the exposure duration increased. In this study, device D (the E-PERM) was the most precise and accurate radon measuring device for long-term exposure conditions."

10.4 RECENT EPA EVALUATIONS OF LONG AND SHORT-TERM E-PERMS

Figure A3 presents the results of their evaluation of the Rad Elec calibration curves for short and long-term E-PERMs carried out by the EPA Las Vegas Laboratory.^(A3) Six ranges of electret voltages were used with mid-point voltages (MPV) from 218 V through 719 V. As seen, the average error with respect to the EPA target concentration was -7.7% and the overall standard deviation was only 5.4%.

10.5 PENNSYLVANIA DOH DOUBLE BLIND TEST RESULTS

In late 1989, the Pennsylvania Department of Environmental Resources (DER) carried out a double-blind test of several radon monitoring companies and devices offered to the public in that state^(A4). The test included several types of short-term passive methods including open faced charcoal canisters, diffusion barrier charcoal method; alpha track detectors; short-term. E-PERM, long-term E-PERM, and short-term alpha track detectors. Figure A4 summarizes the results of these tests graphically by showing the high, low and median MARE values obtained with each. As seen, the median MARE values of 0.10 and 0.11 obtained for the long and short-term E-PERMs, respectively, were lower than those obtained with the other tested and the precision of the E-PERMs was substantially better. As a result of these and similar follow-up tests, the Pennsylvania DER ordered the manufacturers of some of the charcoal and alpha track devices tested to stop selling them in Pennsylvania and to report their inaccuracy to previous users.

10.6 NEW YORK STATE DEPARTMENT OF HEALTH E-PERM EVALUATION

J.M. Matuszek of the New York State Department of Health recently carried out an evaluation^(A5) of both long and short-term E-PERMs. The study also evaluated some types of charcoal and alpha track devices. All of the devices were exposed to know concentrations in the DOE chamber at the Environmental Measurement Laboratory in New York City. The E-PERM results are shown in Figure A5. The overall average MARE values of 0.047 and 0.022 which were obtained for short and long-term E-PERMs, respectively show, excellent E-PERM accuracy (*MARE values up to 0.25 is considered "passing" in the EPA/RMP program).

The average MARE values shown in Figure A5 for the E-PERMs which were exposed for only one day are somewhat higher than the others. E-PERMs do not generate sufficient signal (electret voltage drop) in such a short exposure period to assure good accuracy. Also, it takes a few hours for the progeny to reach equilibrium in the E-PERM chamber which can cause a low reading in a one day exposure. For these reasons, current Rad Elec and EPA protocols expressly limit the minimum exposure time for short and long-term E-PERMs to 2 days and one month, respectively.

The author concludes that: "Electret detectors appear to provide a convenient, accurate and precise system for the measurement of radon concentration." The accuracy and precision of the results of the charcoal and alpha track monitors exposed simultaneously during the study were substantially less than for the E-PERMs and the author discusses the reasons for these shortcomings.

10.7 TESTS OF E-PERMS VS. CHARCOAL CANISTERS BY NEW YORK STATE ENERGY AUTHORITY

A complete E-PERM system with 40 E-PERMs was delivered to the New York State Research and Development Authority (NYSERDA) at the end of Phase 2 as part of the Agreement for this project. NYSERDA made the system available to the New York State Energy Authority and W.J. Condon, et al (A6) of that group carried out extensive field testing of the E-PERM vs.

open faced charcoal canisters The E-PERMs and canisters were sent by mail to several homeowners for simultaneous exposure side by side. Some of the homes were tested for two days and some for five days.

Figure A6 shows the results of these side by side exposures of charcoal canisters and E-PERMs. The wide divergence of some of the readings is typical of such comparison testing. Though there is no way to determine which values are correct, the canister readings are more suspect because of the many factors which affect the absorption of radon on charcoal. Variations in radon concentration, temperature, humidity, and air velocity during exposure all affect canister readings. None of these factors affect the response of E-PERMs. According to Matuszek (A5), charcoal canister results are heavily weighted toward the radon concentrations the charcoal "sees" toward the end of an exposure period. Different types and even different batches of charcoal must also be calibrated separately for their interdependent radon and moisture absorption characteristics.

10.8 AUSTRIAN RESEARCH CENTER SHORT-TERM E-PERM EVALUATION

H. Staatmann of the Austrian Research Centre at Seibersdorf, Austria recently carried out an independent evaluation of both short and long-term E-PERMs^(A7). Statmann exposed several E-PERMs to four different target concentrations ranging from 4.0 to 181.5 pCiL⁻¹ and for four exposure periods ranging from 2.81 to 10.06 days. His results are presented in Figure A7. As seen, the average overall error was only -3.9% and the average statistical deviation was only 3.1%. A large ion chamber was used as the reference monitor for these tests.

10.9 UNIVERSITY OF IOWA DOUBLE BLIND TESTS

Figure A8 shows the results of a double blind test of four types of short-term passive monitors carried out by R.W. Field and B.C. Kross(A8) of the University of Iowa in the basement of a home. The various types of monitors evaluated in this study are shown. The E-PERMs used in this investigation were all sent to Iowa through the mail, exposed, and returned to Rad Elec in

Maryland for analysis. All of the other passive monitors tested (except the EPA canisters) were obtained by the investigators in local stores and returned to the manufacturer for analysis. Three different exposure periods (2, 5 and 7 days) were used to accommodate the instructions included with the various monitor types. A Fempto Tech continuous monitoring instrument which employs a passive ion chamber as the radon sensor was used as the reference monitor. The researchers estimated the accuracy of this instrument to be $\pm 10\%$.

The five short-term E-PERMs which were exposed in each of the three exposure periods all gave very good results, i.e., the average MARE values for the 2, 5, and 7 day E-PERM exposure groups were 0.045, 0.091 and 0.052, respectively, and the average standard deviations were 0.4%, 1.1% and 0.4%, respectively. The overall average E-PERM MARE was only 0.063 and the average E-PERM standard deviation was 7.3%. As seen, the E-PERM accuracies are much higher (better) than those for all but one of the seven other groups of monitors tested. It is interesting to note that the average MARE for the 15 EPA open faced canisters was only 0.264, which is higher than the maximum value (0.250) required to pass the EPA RMPP blind test.

FIGURE A1 INITIAL EPA E-PERM EVALUATION (1987)

Exposure Period (days)	Target Conc. (pCiL ⁻¹)	Min. Conc. (pCiL ⁻¹)	Max. Conc. (pCiL ⁻¹)	Mean Conc. (pCiL ⁻¹)	SD (%)	Results with > 25% error (%)		
Alpha Track Device A								
7	200.0	84.0	1418.0	400.0	96	35		
98	7.6	3.0	14.4	10.0	33	79		
180	6.2	0.5	6.8	5.1	<u>2.7</u>	<u>33</u>		
				Averages	43.9	49		
			<u>Alpha Tra</u>	ack Device B				
7	200.0	78.0	282.0	164.0	30	65		
98	7.6	2.3	10.0	6.1	30	46		
180	6.2	3.8	9.2	6.8	<u>20</u>	<u>36</u>		
				Averages	26.7	49		
5 			<u>Alpha Tra</u>	ack Device C				
7	200.0	170.0	218.0	196.0	6	0		
98	7.6	5.6	7.1	6.4	6	7		
180	6.2	3.0	5.8	4.9	14	<u>30</u>		
				Averages	8.7	12.3		
Long-Term E-PERM								
7	200.0	186.0	244.0	196.0	8	0		
98	7.6	7.1	11.1	7.6	9	3		
180	6.2	5.4	8.2	6.0	<u>8</u>	<u>3</u>		
				Averages	8.3	2		

FIGURE A2 EPA TEST OF LONG-TERM E-PERMS VS. ALPHA TRACK DEVICES*

6

* Carried out by R.J. Lyon ; et al.^(A2) at the EPA Las Vegas Laboratory

.

•

E-PERMS IN BATCH (NO.)	MPV* (Volts)	TARGET CONC. (pCiL ⁻¹)	MEASURED CONC. (pCiL ⁻¹)	AVG. MARE VALUE	SD (%)				
	Short-Term E-PERMs								
4	693	15.8	15.6	.013	6.2				
4	682	7.0	7.4	.057	1.9				
5	596	41.5	36.2	.128	5.7				
6	495	10.0	10.6	.060	7.5				
6	397	22.1	22.3	.009	4.9	3 .			
8	361	42.6	41.9	.016	6.0				
5	315	16.0	17.1	.069	7.6				
6	253	35.8	33.5	.064	4.2				
<u>6</u>	183	34.9	32.7	.040	<u>6.1</u>				
50	,	A	verages	.034	5.6	×			
		Long-Tern	n E-PERMs						
3	719	11.4	13.2	.158	5.1				
3	615	12.1	13.2	.091	4.4				
3	513	12.7	13.2	.039	9.1				
3	416	12.3	13.2	.073	5.3				
3	316	12.8	13.2	.031	2.1				
<u>3</u>	218	<u>12.3</u>	<u>13.2</u>	.0 <u>73</u>	<u>4.2</u>				
18	Averages	12.3	13.2	.077	5.4				

FIGURE A3 EPA EVALUATION OF LONG AND SHORT-TERM E-PERMS*

*Carried out at the USEPA Las Vegas Laboratory(A)

**Mid-point voltages of electrets

Figure A4 PENNSYLVANIA DOUBLE BLIND TEST

FIGURE A5 NY STATE DOH E-PERM EVALUATION (a)

txposure time (days)	E-PERMs Exposed (No.)	Reference value (pCi/l)	Short-term E-PERMs (pCi/l ± SD)	MARE(b) Value (ST Ave.)	Long-term E-PERMs (pCi/l ± SD	MARE(b) Value (LT Ave.)
	\mathfrak{S}	41.1	35.6 ± 2.0	0.134c	30.3 ± 7.5	0.263c
Э	2	42.5	39.7 ± 3.8	0.066	42.8 ± 1.2	0.007
4	3	42.0	40.3 ± 0.9	0.040	41.0 ± 2.3	0.024
5	3	44.4	43.6 ± 3.3	0.018	42.1 ± 2.1	0.052
Ľ	3	43.6	42.6 ± 0.9	0.023	41.9 ± 0.6	0.039
verage N	IARE Values			0.037		0.031
			-			

a Performed by J. Matuszek (1)

b Added by Rad Elec

^c Omitted from average MARE values because EPA E-PERM protocol requires more than 1 day exposure (see text)

Figure A6 NEW YORK STATE ENERGY AUTHORITY E-PERM VS. CHARCOAL EVALUATION

FIGURE A7 RESULTS OF AUSTRIAN RESEARCH CENTER

E-PERM EVALUATION*

Electret Type**	Exposure (Days)	Target Concentration (pCiL ⁻¹)	E-PERM Concentration (pCiL ⁻¹)	Average Concentration (pCiL ⁻¹)	SD (%)	Average Error (%)	
LT	2.81	181.5	177.9				
LT	2.81	181.5	172.6	176.1	1.7	- 3.4	
LT	4.93	75.1	72.8				
LT	4.93	75.1	73.0	72.9	0.2	- 2.8	
ST	4.05	11.7	11.5				
ST	4.05	11.7	10.4				
ST	4.05	11.7	11.0	11.0	5.0	- 5.8	
ST	10.06	4.0	4.0				
ST	10.06	4.0	3.6				
ST	10.06	4.0	3.9	3.8	<u>5.5</u>	<u> </u>	
			A	verages	3.1	- 3.9	

* Carried out by H. Statmann (A7) at Seibersdorf, Austria

**LT = long-term; ST = short-term

Supplier	Detectors No. & (type*)	Exposure Period (days)	Target Radon Conc. (pCiL ⁻¹)	Measured Radon Conc. $pCiL^{-1} \pm SD$	MARE Value	
RAD ELEC, INC.	5 (EPS)	7	10.6	10.2 ± 0.4	0.045	â
AMER. RADON SERVICES	15 (DB)	7	10.6	10.8 ± 0.8	0.057	
AIR CHECK INC.	15 (DB)	7	10.6	11.4 ± 1.1	0.098	
THE RADON PROJECT	15 (DB)	7	10.6	10.5 ± 2.7	0.169	
RAD ELEC, INC	5 (EPS)	5	10.6	10.1 ± 1.2	0.091	
TERRADEX	15 (ATQ)	5	10.6	3.4 ± 1.7	0.679	
RAD ELEC, INC.	5 (EPS)	2	9.2	9.6 ± 0.5	0.052	
RYAN NUC. LABS	15 (CC)	2	9.2	11.0 ± 0.8	0.198	
KEY TECH.	15 (CC)	2	9.2	10.3 ± 0.8	0.136	
EPA	15 (CC)	2	9.2	11.6 ± 0.5	0.264	

FIGURE A8 UNIVERSITY OF IOWA DOUBLE BLIND COMPARISONS*

*Carried out by R.W. Field and B.C. Kross (A8)

**Open face charcoal canisters (CC); diffusion barrier charcoal canisters (DB); short-term alpha track detectors (ATQ), short-term E-PERMs (EPS)

10.10 APPENDIX REFERENCES

- A1 Hopper, R.D.; Operational Evaluation of Electret Passive Environmental Radon Monitor (E-PERM). USEPA Report, Office of Radiation Programs, Las Vegas, NV, Sept. 1987.
- A2 Lyon, R.J.; Hopper R.D.; Parks, B.S.; Dickson, M.; and Boyd, M; Accuracy and Precision of Passive Long-Term Radon Detectors as a Function of Concentration and Exposure Time. The 1990 International Symposium on Radon and Radon Reduction Technology; Atlanta, GA; Feb. 1990.
- A3 Standard Operating Procedure for the E-PERM; Calibration and Performance Evaluation of Short-Term and Long-Term E-PERMs. SOP Rn/POS3; USEPA Office of Radiation Programs, Las Vegas, NV Facility; 1989.
- A4 Gerusky, T.M.; Letter to all Pennsylvania DER certified radon measurement laboratories; Nov. 1989.
- A5 Matuszek, J.M.; Hutchinson, J.A.; Lance, B.H.; Virgil, M.G. and Mahoney, R.J.; Standardization of radon measurements. Environmental International 14:371-378; 1988.
- A6 Condon, W.J., Huang, J. and Rimawi, K.; Survey of Indoor Radon Levels in New York State and Evaluation of U.S. EPA Screening Protocols. New York Energy Authority Report 90-9, June 1990.
- A7 Staatmann, H; Private Communication. Austrian Research Center, Seibersdorf, Austria. (Available from authors).
- A8 Field, R.W. and Kross, B.C.; Field Comparison of Several Commercially Available Radon Detectors. AJPH Vol. 80, No. 9, Sept. 1990.